New common fixed point theorems for quartet mappings on orthogonal \(\mathcal{S}\)-metric spaces with applications
Volume 38, Issue 1, pp 80--97
https://dx.doi.org/10.22436/jmcs.038.01.06
Publication Date: November 21, 2024
Submission Date: June 29, 2024
Revision Date: September 02, 2024
Accteptance Date: September 17, 2024
Authors
B. W. Samuel
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamilnadu, India.
G. Mani
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamilnadu, India.
P. Ganesh
- Department of Mathematics, St. Joseph's College of Engineering, Chennai-119, Tamil Nadu, India.
S. T. M. Thabet
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamilnadu, India.
- Department of Mathematics, Radfan University College, University of Lahej, Lahej, Yemen.
- Department of Mathematics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02814, Republic of Korea.
I. Kedim
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
M. Vivas-Cortez
- Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Av. 12 de octubre 1076 y Roca, Apartado Postal 17-01-2184, Sede Quito, Ecuador.
Abstract
In this article, we extend the scope of fixed point theory by proving a common fixed point theorem applicable to quartet mappings defined on orthogonal \(\mathcal{S}\)-metric spaces. Our theorems establish conditions under which the quartet mappings \(\Phi, \Psi, \mathcal{H}\), and \(\mathcal{K}\) are orthogonal preserving, orthogonal continuous, and pairwise compatible mappings, possess a unique common fixed point. To elucidate the practical implications of our theoretical result, we present a concrete example illustrating its application. Finally, we demonstrate the versatility of our theorem by applying it to establish the existence and uniqueness of solutions for Volterra-type integral system, production-consumption equilibrium and fractional differential equations.
Share and Cite
ISRP Style
B. W. Samuel, G. Mani, P. Ganesh, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, New common fixed point theorems for quartet mappings on orthogonal \(\mathcal{S}\)-metric spaces with applications, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 80--97
AMA Style
Samuel B. W., Mani G., Ganesh P., Thabet S. T. M., Kedim I., Vivas-Cortez M., New common fixed point theorems for quartet mappings on orthogonal \(\mathcal{S}\)-metric spaces with applications. J Math Comput SCI-JM. (2025); 38(1):80--97
Chicago/Turabian Style
Samuel, B. W., Mani, G., Ganesh, P., Thabet, S. T. M., Kedim, I., Vivas-Cortez, M.. "New common fixed point theorems for quartet mappings on orthogonal \(\mathcal{S}\)-metric spaces with applications." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 80--97
Keywords
- Compatible mappings
- \(\mathcal{S}\)-metric space
- orthogonal metric spaces
- orthogonal \(\mathcal{S}\)-metric space
- common fixed point
MSC
References
-
[1]
T. Abdeljawad, S. T. M. Thabet, I. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 16 pages
-
[2]
O. K. Adewale, C. Iluno, Fixed point theorems on rectangular S-metric spaces, Sci. Afr., 16 (2022), 10 pages
-
[3]
J. M. Afra, Double contraction in S-metric spaces, Int. J. Math. Anal., 9 (2015), 117–125
-
[4]
P. Amiri, M. E. Samei, Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators, Chaos Solitons Fractals, 165 (2022), 17 pages
-
[5]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181
-
[6]
I. Beg, G. Mani, J. Arul, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete b-metric spaces with applications, J. Funct. Spaces, 2021 (2021), 12 pages
-
[7]
P. Chouchan, N. Malviya, A common unique fixed point theorem for expansive type mappings in S-metric spaces, Int. Math. Forum, 8 (2013), 1287–1293
-
[8]
N. V. Dung, N. T. Hieua, S. Radojevi´, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat, 28 (2014), 1885–1898
-
[9]
Z. Eivazi Damirchi Darsi Olia, M. Eshaghi, D. Ebrahimi Bagha, Banach fixed point theorem on incomplete orthogonal S-metric spaces, Int. J. Nonlinear Anal. Appl., 14 (2021), 151–157
-
[10]
M. Eshaghi Gordji, H. Habibi, Fixed Point theory in generalized orthogonal metric space, J. Linear Topol. Algebra, 6 (2017), 251–260
-
[11]
A. Gholidahneh, S. Sedghi, T. Doˇsenovi´c, S. Radenovi´c, Ordered S-metric spaces and coupled common fixed point theorems of integral type contraction, Math. Interdiscip. Res., 2 (2017), 71–84
-
[12]
A. J. Gnanaprakasam, G. Mani, O. Ege, A. Aloqaily, N. Mlaiki, New fixed point results in orthogonal b-metric spaces with related applications, Mathematics, 11 (2023), 18 pages
-
[13]
A. J. Gnanaprakasam, G. Mani, V. Parvaneh, H. Aydi, Solving a nonlinear Fredholm integral equation via an orthogonal metric, Adv. Math. Phys., 2021 (2021), 8 pages
-
[14]
M. E. Gordji, M. Rameani, M. De La Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578
-
[15]
A. Gupta, Cyclic contraction on S-metric spaces, Int. J. Anal., Appl., 3 (2013), 119–130
-
[16]
H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2024), 632–647
-
[17]
M. Houas, M. E. Samei, Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing- Rayleigh problem, Mediterr. J. Math., 20 (2023), 28 pages
-
[18]
S. A. Khandait, R. Bhardwaj, C. Singh, Common Fixed Point Theorems in Soft S-Metric Spaces, Anusandhan– Rabindranath Tagore Univ. J., 10 (2021), 2400–2405
-
[19]
T. Kherraz, M. Benbachir, M. Lakrib, M. E. Samei, M. K. A. Kaabar, S. A. Bhanotar, Existence and uniqueness results for fractional boundary value problems with multiple orders of fractional derivatives and integrals, Chaos Solitons Fractals, 166 (2023), 10 pages
-
[20]
J. K. Kim, S. Sedghi, A. Gholidahneh, M. Mahdi Rezaee, Fixed point theorems in S-metric spaces, East Asian Math. J., 32 (2016), 677–684
-
[21]
J. U. Maheswari, K. Dillibabu, G. Mani, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, On new common fixed point theorems via bipolar fuzzy b-metric space with their applications, PLoS ONE, 19 (2024), 17 pages
-
[22]
G. Mani, S. Chinnachamy, S. Palanisamy, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, Efficient techniques on bipolar parametric v-metric space with application, J. King Saud Univ. Sci., 36 (2024), 7 pages
-
[23]
G. Mani, A. J. Gnanaprakasam, K. Javed, S. Kumar, On Orthogonal Coupled Fixed Point Results with an Application, J. Funct. Spaces, 2022 (2022), 7 pages
-
[24]
G. Mani, A. J. Gnanaprakasam, C. Park, S. Yun, Orthogonal F-contractions on O-complete b-metric space, AIMS Math., 6 (2021), 8315–8330
-
[25]
G. Mani, S. Haque, A. J. Gnanaprakasam, O. Ege, N. Mlaiki, The Study of bicomplex-valued controlled metric spaces with applications to fractional differential equations, Mathematics, 11 (2023), 19 pages
-
[26]
G. Mani, P. Subbarayan, Z. D. Mitrovi´c, A. Aloqaily, N. Mlaiki, Solving some integral and fractional differential equations via neutrosophic pentagonal metric space, Axioms, 12 (2023), 30 pages
-
[27]
M. M. Matar, M. E. Samei, S. Etemad, A. Amara, S. Rezapour, J. Alzabut, Stability analysis and existence criteria with numerical illustrations to fractional jerk differential system involving generalized Caputo derivative, Qual. Theory Dyn. Syst., 23 (2024), 36 pages
-
[28]
N. Mlaiki, N. Y. Özgür, N. Ta¸, New Fixed-Point Theorems on an S-metric Space via Simulation Functions, Mathematics, 7 (2019), 13 pages
-
[29]
K. Muthuvel, K. Kaliraj, K. S. Nisar, V. Vijayakumar, Relative controllability for ψ-Caputo fractional delay control system, Results Control Optim., 16 (2024), 16 pages
-
[30]
G. Nallaselli, A. J. Gnanaprakasam, G. Mani, Z. D. Mitrovi´c, A. Aloqaily, N. Mlaiki, Integral equation via fixed point theorems on a new type of convex contraction in b-metric and 2-metric spaces, Mathematics, 11 (2023), 18 pages
-
[31]
K. S. Nisar, A constructive numerical approach to solve the Fractional Modified Camassa–Holm equation, Alex. Eng. J., 106 (2024), 19–24
-
[32]
S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237–22255
-
[33]
S. Sedghi, I. Altun, N. Shobe, M. A. Salahshour, Some properties of S-metric spaces and fixed point results, Kyungpook Math. J., 54 (2014), 113–122
-
[34]
S. Sedghi, N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik, 66 (2014), 113–124
-
[35]
S. Sedghi, A. Gholidahneh, T. Došenovi´c, J. Esfahani, S. Radenovi´, Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra, 5 (2016), 93–104
-
[36]
S. Sedghi, N. Shobe, Common fixed point theorems for four mappings in complete metric spaces, Bull. Iranian Math. Soc., 33 (2007), 37–47
-
[37]
S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (2012), 258–266
-
[38]
S. Sedghi, N. Shobe, T. Doˇsenovi´c, Fixed point results in S-metric spaces, Nonlinear Funct. Anal. Appl., 20 (2015), 55–67
-
[39]
S. Sedghi, N. Shobkolaei, M. Shahraki, T. Doˇsenovi´c, Common fixed point of four maps in S-metric spaces, Math. Sci. (Springer), 12 (2018), 137–143
-
[40]
M. Shabibi, M. E. Samei, M. Ghaderi, S. Rezapour, Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions, Adv. Difference Equ., 2021 (2021), 17 pages
-
[41]
S. T. M. Thabet, S. Al-S ´ adi, I. Kedim, A. S. Rafeeq, S. Rezapour, Analysis study on multi-order ρ-Hilfer fractional pan-tograph implicit differential equation on unbounded domains, AIMS Math., 8 (2023), 18455–18473
-
[42]
A. A. Thirthar, H. Abboubakar, A. L. Alaoui, K. S. Nisar, Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions, Results Control Optim., 16 (2024), 21 pages
-
[43]
S. K. Tiwari, S. K. Mishra, A Common fixed point theorem in S-metric space, Wesley. J. Res., 14 (2021), 170–174