A double inertial embedded Ishikawa algorithm for two nonexpansive mappings applies to breast cancer detection
Authors
P. Nabheerong
- Department of Radiology, School of Medicine, University of Phayao, Phayao 56000, Thailand.
W. Kiththiworaphongkich
- Department of Radiology, Phayao Hospital, Phayao 56000, Thailand.
W. Cholamjiak
- Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.
Abstract
Breast cancer remains a major health challenge worldwide, with early detection being crucial for enhancing treatment outcomes and prolonging life. This study introduces innovative machine learning techniques aimed at advancing breast cancer screening models. Specifically, we propose a double inertial embedded Ishikawa algorithm that enhances the traditional Ishikawa algorithm with a double inertial technique for two distinct nonexpansive mappings. We establish a weak convergence theorem in Hilbert spaces, utilizing relaxed real number extrapolation parameters. An example in an infinite-dimensional space corroborates our theoretical findings. The practical application of this algorithm is demonstrated using a real dataset from Phayao Hospital in Northern Thailand, supplemented by data from the UCI website, within an Extreme Learning Machine framework for efficient prediction. Achieving an accuracy of 88.57\%, our algorithm outperforms the well-known FISTA algorithms, highlighting its potential for improving breast cancer diagnostic protocols and outcomes.
Share and Cite
ISRP Style
P. Nabheerong, W. Kiththiworaphongkich, W. Cholamjiak, A double inertial embedded Ishikawa algorithm for two nonexpansive mappings applies to breast cancer detection, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 111--124
AMA Style
Nabheerong P., Kiththiworaphongkich W., Cholamjiak W., A double inertial embedded Ishikawa algorithm for two nonexpansive mappings applies to breast cancer detection. J Math Comput SCI-JM. (2025); 38(1):111--124
Chicago/Turabian Style
Nabheerong, P., Kiththiworaphongkich, W., Cholamjiak, W.. "A double inertial embedded Ishikawa algorithm for two nonexpansive mappings applies to breast cancer detection." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 111--124
Keywords
- Nonexpansive
- Ishikawa algorithm
- inertial technique
- mammographic
- breast cancer
MSC
References
-
[1]
J. Abounadi, D. P. Bertsekas, V. Borkar, Stochastic approximation for nonexpansive maps: application to Q-learning algorithms, SIAM J. Control Optim., 41 (2002), 1–22
-
[2]
H. Attouch, A. Cabot, Convergence rates of inertial forward-backward algorithms, SIAM J. Optim., 28 (2018), 849–874
-
[3]
T. Ayer, M. U. Ayvaci, Z. X. Liu, O. Alagoz, E. S. Burnside, Computer-aided diagnostic models in breast cancer screening, Imaging Med., 2 (20101), 313–323
-
[4]
H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367–426
-
[5]
H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York (2011)
-
[6]
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202
-
[7]
M. Ben naceur, M. Akil, R. Saouli, R. Kachouri, Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy, Med. Image Anal., 63 (2020),
-
[8]
R. I. Bo¸t, E. R. Csetnek, S. C. László, An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions, EURO J. Comput. Optim., 4 (2016), 3–25
-
[9]
F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1272–1276
-
[10]
L. C. Ceng, P. Cubiotti, J. C. Yao, Strong convergence theorems for finitely many nonexpansive mappings and applications, Nonlinear Anal., 67 (2007), 1464–1473
-
[11]
Y.-W. Chang, J. K. An, N. Choi, K. H. Ko, K. H. Kim, K. Han, J. K. Ryu, Artificial intelligence for breast cancer screening in mammography (AI-STREAM): A prospective multicenter study design in Korea using AI-based CADe/x, J. Breast Cancer, 25 (2022), 57–68
-
[12]
A. Columbu, R. Díaz Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction– repulsion chemotaxis models with logistics, Nonlinear Anal. Real World Appl., 79 (2024), 14 pages
-
[13]
G. Durhan, A. Azizova, Ö. Önder, K. Kösemehmeto˘ glu, J. Karakaya, M. G. Akpınar, F. Demirkazık, A. Üner, Imaging findings and clinicopathological correlation of breast cancer in women under 40 years old, Eur. J. Breast Health, 15 (2019), 147–152
-
[14]
M. Elter, R. Schulz-Wendtland, T.Wittenberg, The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process, Med. Phys., 34 (2007), 4164–4172
-
[15]
K. Freeman, J. Geppert, C. Stinton, D. Todkill, S. Johnson, A. Clarke, S. Taylor-Phillips, Use of artificial intelligence for image analysis in breast cancer screening programmes: Systematic review of test accuracy, BMJ, 374 (2021), 15 pages
-
[16]
K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge (1900)
-
[17]
L. J. Grimm, C. S. Avery, E. Hendrick, J. A. Baker, Benefits and risks of mammography screening in women ages 40 to 49 years, J. Prim. Care Community Health, 13 (2022), 1–6
-
[18]
Z. Guo, J. Xie, Y. Wan, M. Zhang, L. Qiao, J. Yu, S. Chen, B. Li, Y. Yao, A review of the current state of the computeraided diagnosis (CAD) systems for breast cancer diagnosis, Open Life Sci., 17 (2022), 1600–1611
-
[19]
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489–501
-
[20]
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150
-
[21]
Y. Jiang, Computer-aided diagnosis of breast cancer in mammography: evidence and potential, Technol. Cancer Res. Treat., 1 (2002), 211–216
-
[22]
Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger, K. Doi, Improving breast cancer diagnosis with computer-aided diagnosis, Acad. Radiol., 6 (1999), 22–33
-
[23]
Z. Jiao, I. Jadlovská, T. Li, Finite-time blow-up and boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear signal productions, Nonlinear Anal. Real World Appl., 77 (2024), 15 pages
-
[24]
Z. Jiao, I. Jadlovská, T. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equ., 411 (2024), 227–267
-
[25]
J. Katzen, K. Dodelzon, A review of computer aided detection in mammography, Clin. Imaging, 52 (2018), 305–309
-
[26]
W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004–1006
-
[27]
M. Larsen, C. F. Aglen, S. R. Hoff, H. Lund-Hanssen, S. Hofvind, Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations, Eur. Radiol., 32 (2022), 8238–8246
-
[28]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[29]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336
-
[30]
J. Liang, C. B. Schönlieb, Improving FISTA: Faster, Smarter, and Greedier, arXiv preprint arXiv:1811.01430, 2018 (2018),
-
[31]
L. Liberman, J. H. Menell, Breast imaging reporting and data system (BI-RADS), Radiol. Clin., 40 (2002), 409–430
-
[32]
K. Loizidou, R. Elia, C. Pitris, Computer-aided breast cancer detection and classification in mammography: A comprehensive review, Comput. Biol. Med., 153 (2023), 24 pages
-
[33]
G. López, V. Martín-Márquez, F. Wang, H.-K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 25 pages
-
[34]
D. A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311–325
-
[35]
S. Lukasiewicz, M. Czeczelewski, A. Forma, J. Baj, R. Sitarz, A. Stanisławek, Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review, Cancers, 13 (2021), 30 pages
-
[36]
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510
-
[37]
R. M. Mann, R. Hooley, R. G. Barr, L. Moy, Novel approaches to screening for breast cancer, Radiology, 297 (2020), 266–285
-
[38]
E. Matthias, Mammographic Mass, UCI Machine Learning Repository, (2007)
-
[39]
P. Nabheerong, W. Kiththiworaphongkich, W. Cholamjiak, Breast Cancer Screening Using a Modified Inertial Projective Algorithm for Split Feasibility Problems, Int. J. Breast Cancer, 2023 (2023), 9 pages
-
[40]
E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl., 321 (2006), 722–728
-
[41]
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597
-
[42]
P. Peeyada, R. Suparatulatorn, W. Cholamjiak, An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications, Chaos Solitons Fractals, 158 (2022), 7 pages
-
[43]
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17
-
[44]
X. Qin, S. Y. Cho, H. Zhou, Common fixed points of a pair of non-expansive mappings with applications to convex feasibility problems, Glasg. Math. J., 52 (2010), 241–252
-
[45]
J. Shiraishi, Q. Li, D. Appelbaum, K. Doi, Computer-aided diagnosis and artificial intelligence in clinical imaging, Semin. Nucl. Med., 41 (2011), 449–462
-
[46]
N. X. Tan, On the existence of solutions of quasivariational inclusion problems, J. Optim. Theory Appl., 123 (2004), 619–638
-
[47]
N. W. S. Wardhani, M. Y. Rochayani, A. Iriany, A. D. Sulistyono, P. Lestantyo, Cross-validation metrics for evaluating classification performance on imbalanced data, In: 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), IEEE, (2019), 14–18
-
[48]
S.-S. Zhang, J. H. Lee, C. K. Chan, Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), 29 (2008), 571–581