Existence, stability, and controllability of impulsive coupled Langevin \(\psi\)-Hilfer fractional problem
Authors
H. N. A. Khan
- Department of Mathematics, University of Peshawar, 25000, Pakistan.
- Department of Basic Sciences and Humanities, CECOS University of IT and Emerging Sciences, Peshawar, Khyber Pakhtunkhwa, Pakistan.
A. Zada
- Department of Mathematics, University of Peshawar, 25000, Pakistan.
A. Kallekh
- Department of Mathematics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia.
I-L. Popa
- Department of Computing, Mathematics and Electronics, Alba Iulia, 510 0 09, Romania.
- Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Iuliu Maniu Street 50, 500091 Brasov, Romania.
J. Zhang
- Engineering department, Anhui Sanlian University, China.
Abstract
This paper investigates a coupled Langevin \(\psi\)-Hilfer fractional problem in a Banach space with instantaneous impulsive conditions. By using the theory of fixed point theorems, we are able to obtain the uniqueness and existence results. We also talk about Ulam-Hyers stability and controllability in a similar way. In order to demonstrate the veracity of the acquired results, we also provide an example.
Share and Cite
ISRP Style
H. N. A. Khan, A. Zada, A. Kallekh, I-L. Popa, J. Zhang, Existence, stability, and controllability of impulsive coupled Langevin \(\psi\)-Hilfer fractional problem, Journal of Mathematics and Computer Science, 38 (2025), no. 2, 125--159
AMA Style
Khan H. N. A., Zada A., Kallekh A., Popa I-L., Zhang J., Existence, stability, and controllability of impulsive coupled Langevin \(\psi\)-Hilfer fractional problem. J Math Comput SCI-JM. (2025); 38(2):125--159
Chicago/Turabian Style
Khan, H. N. A., Zada, A., Kallekh, A., Popa, I-L., Zhang, J.. "Existence, stability, and controllability of impulsive coupled Langevin \(\psi\)-Hilfer fractional problem." Journal of Mathematics and Computer Science, 38, no. 2 (2025): 125--159
Keywords
- Coupled system
- controllability
- existence
- Langevin equation
- instantaneous impulsive conditions
- stability
- \(\psi\)-Hilfer derivative
MSC
- 34N05
- 34A12
- 93B05
- 34A08
- 37C25
References
-
[1]
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481
-
[2]
A. Boudjerida, D. Seba, G. M. N’Guérékata, Controllability of coupled systems for impulsive ϕ-Hilfer fractional integrodifferential inclusions, Appl. Anal., 101 (2022), 383–400
-
[3]
A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Control, 5 (2017), 168–186
-
[4]
A. Columbu, R. Díaz Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction-repulsion chemotaxis models with logistic, Nonlinear Anal. Real World Appl., 79 (2024), 14 pages
-
[5]
L. Debnath, A brief historical introduction to fractional calculus, Int. J. Math. Ed. Sci. Tech., 35 (2004), 487–501
-
[6]
Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Control Syst. Technol., 20 (2012), 763–769
-
[7]
M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dynam., 72 (2013), 301–309
-
[8]
R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge (2000)
-
[9]
M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-touic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18
-
[10]
K. H. Khalid, A. Zada, I.-L. Popa, M. E. Samei, Existence and stability of a q-Caputo fractional jerk differential equation having anti-periodic boundary conditions, Bound. Value Probl., 2024 (2024), 29 pages
-
[11]
I. Khan, A. Zada, Analysis of abstract partial impulsive integro-differential system with delay via integrated resolvent operator, Qual. Theory Dyn. Syst., 23 (2024), 15 pages
-
[12]
H. N. A. Khan, A. Zada, I. Khan, Analysis of a coupled system of Ψ-Caputo fractional derivatives with multipointmultistrip integral type boundary conditions, Qual. Theory Dyn. Syst., 23 (2024), 41 pages
-
[13]
H. N. A. Khan, A. Zada, I.-L. Popa, S. Ben Moussa, The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions, Fractal Fract., 7 (2023), 40 pages
-
[14]
A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order: methods, results and problems. I, Appl. Anal., 78 (2013), 153–192
-
[15]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[16]
S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320
-
[17]
M. Lundqvist, Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging, Stockholm, Kungl Tekniska Hogskolan (2003)
-
[18]
Y. Ma, M. Maryam, U. Riaz, I.-L. Popa, L. Ragoub, A. Zada, Existence and Hyers–Ulam stability of jerk-type Caputo and Hadamard mixed fractional differential equations, Qual. Theory Dyn. Syst., 23 (2024),
-
[19]
F. Mainardi, P. Pironi, The fractional Langevin equation: Brownian motion revisited, Extracta Math., 11 (1996), 140–154
-
[20]
T. Mellow, L. Kärkkäinen, On the sound fields of infinitely long strips, J. Acoust. Soc. Am., 130 (2011), 153–167
-
[21]
B. Pervaiz, A. Zada, I.-L. Popa, S. Ben Moussa, A. Kallekh, Exponential stability and relative controllability of first-order delayed integro-differential systems with impulses, Math. Methods Appl. Sci., 47 (2024), 7590–7615
-
[22]
B. Radhakrishnan, T. Sathya, Controllability of Hilfer fractional Langevin dynamical system with impulse in an abstract weighted space, J. Optim. Theory Appl., 195 (2022), 265–281
-
[23]
R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Difference Equ., 2019 (2019), 31 pages
-
[24]
I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107
-
[25]
H. Waheed, A. Zada, I.-L. Popa, S. Etemad, S. Rezapour, On a system of sequential Caputo-type p-Laplacian fractional BVPs with stability analysis, Qual. Theory Dyn. Syst., 23 (2024), 28 pages
-
[26]
H. Waheed, A. Zada, R. Rizwan, I.-L. Popa, Controllability of coupled fractional integrodifferential equations, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 2113–2144
-
[27]
G. Wang, B. Ahmad, L. Zhang, Impulsive anti–periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 74 (2011), 792–804
-
[28]
W. Wang, K. H. Khalid, A. Zada, S. Ben Moussa, J. Ye, q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions, Mathematics, 11 (2023), 27 pages
-
[29]
H. Wang, J. Ku, Controllability of Hilfer fractional Langevin evolution equations, Front. Appl. Math. Stat., 9 (2023), 9 pages
-
[30]
J. Wang, A. Zada, W. Ali, Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi- Banach spaces, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 553–560
-
[31]
A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., 40 (2017), 5502–5514
-
[32]
A. Zada, S. Ali, Y. Li, Ulam–type stability for a class of implicit fractional differential equations with non–instantaneous integral impulses and boundary condition, Adv. Difference Equ., 2017 (2017), 26 pages
-
[33]
E. Zeidler, Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators, Springer, (2013)
-
[34]
K. Zhang, K. H. Khalid, A. Zada, I.-L. Popa, J. Xu, A. Kallekh, Analysis of coupled system of q-fractional Langevin differential equations with q-fractional integral conditions, Math. Methods Appl. Sci., 47 (2024), 8135–8159