Quantified neutrosophic set (\(\mathrm{Q^{t}NS}\))-based MCDM algorithms for sustainable material selection for anti-microbial bio-fabricated textile manufacturing
Authors
M. Saeed
- Department of Mathematics, University of Management and Technology, C-II, Johar Town, Lahore, 54700, Pakistan.
N. A. Khalid
- Department of Mathematics, University of Management and Technology, C-II, Johar Town, Lahore, 54700, Pakistan.
F. Smarandache
- Department of Mathematics, University of New Mexico, USA.
Abstract
This paper proposes a modified structure for the neutrosophic set called the Quantified Neutrosophic Set (\(\mathrm{Q^{t}NS}\)) with a parameterized setting. Unlike conventional approaches, the \(\mathrm{Q^{t}NS}\) provides a quantified environment for the indeterminacy by its dependence on truthness and falsity components. This innovative approach quantifies the uncertainty and improves the assessment process via expert-guided opinions, customising it according to the specific situations in real-world decision-making scenarios. Some \(\mathrm{Q^{t}NS}\) operations along with useful characteristics are addressed. Furthermore, two algorithms, \(\mathrm{Q^{t}NS}\)UI and \(\mathrm{Q^{t}NS}\)AO, are developed for the proposed operations of union, intersection, AND, and OR based on \(\mathrm{Q^{t}NS}\). In the world of sustainable materials, biofabricated textiles are making progress. The MCDM methods based on \(\mathrm{Q^{t}NS}\) are developed for material preferences in the industry of biofabricated textiles, specifically with anti-microbial properties. The study's main purpose is to develop a novel technique to quantify and reduce the predicted uncertainties in the material preference problem for antimicrobial biofabricated textile manufacturing. For eco-conscious decision-making, our work would provide an optimised environment at the industrial level, especially for ecologically conscious textile industries, for enhanced and sustainable selection with greater accuracy.
Share and Cite
ISRP Style
M. Saeed, N. A. Khalid, F. Smarandache, Quantified neutrosophic set (\(\mathrm{Q^{t}NS}\))-based MCDM algorithms for sustainable material selection for anti-microbial bio-fabricated textile manufacturing, Journal of Mathematics and Computer Science, 38 (2025), no. 2, 214--235
AMA Style
Saeed M., Khalid N. A., Smarandache F., Quantified neutrosophic set (\(\mathrm{Q^{t}NS}\))-based MCDM algorithms for sustainable material selection for anti-microbial bio-fabricated textile manufacturing. J Math Comput SCI-JM. (2025); 38(2):214--235
Chicago/Turabian Style
Saeed, M., Khalid, N. A., Smarandache, F.. "Quantified neutrosophic set (\(\mathrm{Q^{t}NS}\))-based MCDM algorithms for sustainable material selection for anti-microbial bio-fabricated textile manufacturing." Journal of Mathematics and Computer Science, 38, no. 2 (2025): 214--235
Keywords
- Neutrosophic set
- quantified neutrosophic set (\(\mathrm{Q^{t}NS}\))
- \(\mathrm{Q^{t}NS}\)UI-algorithm
- optimization
- decision making
- bio-fabricated textile
MSC
References
-
[1]
M. R. Ahmad, M. Saeed, U. Afzal, M.-S. Yang, A novel mcdm method based on plithogenic hypersoft sets under fuzzy neutrosophic environment, Symmetry, 12 (2020), 23 pages
-
[2]
A. Amindoust, A. Saghafinia, Textile supplier selection in sustainable supply chain using a modular fuzzy inference system model, J. Text. Inst., 108 (2017), 1250–1258
-
[3]
M. Amiri, M. Hashemi-Tabatabaei, M. Keshavarz-Ghorabaee, A. Kaklauskas, E. K. Zavadskas, J. Antucheviciene, A fuzzy extension of simplified best-worst method (F-SBWM) and its applications to decision-making problems, Symmetry, 15 (2023), 30 pages
-
[4]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96
-
[5]
K. T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343–349
-
[6]
S. A. Bhat, An enhanced AHP group decision-making model employing neutrosophic trapezoidal numbers, J. Oper. Strateg Anal., 1 (2023), 81–96
-
[7]
S. Broumi, A. Bakali, M. Talea, F. Smarandache, V. Uluçay, M. ¸Sahin, A. Dey, M. Dhar, R.-P. Tan, A. Bahnasse, S. Pramanik, Neutrosophic sets: An overview. New Trends in Neutrosophic Theory and Applications, Infinite Study, 2 (2018), 403–434
-
[8]
S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Ital. J. Pure Appl. Math., 32 (2014), 493–502
-
[9]
S. A. Edalatpanah, Neutrosophic structured element, Expert Syst., 37 (2020),
-
[10]
L. Epstein, Fifty years since silent spring, Annu. Rev. Phytopathol., 52 (2014), 377–402
-
[11]
Y. Ersoy, N. Ö. Dogan, An integrated model of fuzzy ahp/fuzzy dea for measurement of supplier performance: A case study in textile sector, Int. J. Supply Oper. Manag., 7 (2020), 17–38
-
[12]
J. C. Fodor, M. R. Roubens, Fuzzy preference modelling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht (1994)
-
[13]
R. Ghasemy Yaghin, F. Darvishi, Integrated textile material and production management in a fuzzy environment: A logistics perspective, J. Text. Inst., 113 (2022), 1380–1400
-
[14]
P. Guarnieri, F. Trojan, Decision making on supplier selection based on social, ethical, and environmental criteria: A study in the textile industry, Resour. Conserv. Recycl., 141 (2019), 347–361
-
[15]
R. Gulati, S. Sharma, R. K. Sharma, Antimicrobial textile: recent developments and functional perspective, Polym. Bull., 79 (2022), 5747–5771
-
[16]
Z. U. Iyigundogdu, O. Demir, A. B. Asutay, F. Sahin, Developing novel antimicrobial and antiviral textile products, Appl. Biochem. Biotechnol., 181 (2017), 1155–1166
-
[17]
M. N. Jafar, M. Saeed, K. M. Khan, F. S. Alamri, H. A. E. W. Khalifa, Distance and similarity measures using max-min operators of neutrosophic hypersoft sets with application in site selection for solid waste management systems, IEEE Access, 10 (2020), 11220–11235
-
[18]
P. Jia, K. Govindan, T.-M. Choi, S. Rajendran, Supplier selection problems in fashion business operations with sustainability considerations, Sustainability, 7 (2015), 1603–1619
-
[19]
A. Kaklauskas, Degree of project utility and investment value assessments, Int. J. Comput. Commun. Control, 11 (2016), 666–683
-
[20]
F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Appl. Soft Comput., 54 (2017), 403–414
-
[21]
S. Karami, R. Ghasemy Yaghin, F. Mousazadegan, Supplier selection and evaluation in the garment supply chain: An integrated dea–pca–vikor approach, J. Text. Inst., 112 (2021), 578–595
-
[22]
B. Lipp-Symonowicz, S. Sztajnowski, D. Wojciechowska, New commercial fibres called’bamboo fibres’-their structure and properties, Fibres Text. East. Eur., 19 (2011), 18–23
-
[23]
P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602
-
[24]
B. Masoomi, I. G. Sahebi, A. Arab, S. A. Edalatpanah, A neutrosophic enhanced best–worst method for performance indicators assessment in the renewable energy supply chain, Soft Comput., (2023), 1–20
-
[25]
K. K. Mohanta, O. Toragay, Enhanced performance evaluation through neutrosophic data envelopment analysis leveraging pentagonal neutrosophic numbers, J. Oper. Strateg Anal., 1 (2023), 70–80
-
[26]
D. A. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31
-
[27]
H. Morris, R. Murray, Medical textiles, Text. Prog., 52 (2020), 1–127
-
[28]
A. Nadi, A. Boukhriss, A. Bentis, E. Jabrane, S. Gmouh, Evolution in the surface modification of textiles: a review, Text. Prog., 50 (2018), 67–108
-
[29]
G. Nakiboglu, B. Bulgurcu, Supplier selection in a turkish textile company by using intuitionistic fuzzy decision-making, J. Text. Inst., 112 (2021), 322–332
-
[30]
V. L. G. Nayagam, S. Muralikrishnan, G. Sivaraman, Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 1464–1467
-
[31]
R. Rajendran, Biotechnological application in textile industry—antimicrobial textiles, In: Industrial Exploitation of Microorganisms, IK International Publishing House, New Delhi (2010)
-
[32]
R. M. Rodríguez, L. Martínez, F. Herrera, Hesitant fuzzy linguistic term sets for decision making, IEEE Trans. Fuzzy Syst., 20 (2012), 109–119
-
[33]
M. Saeed, M. Saqlain, M. Riaz, Application of generalized fuzzy TOPSIS in decision making for neutrosophic soft set to predict the champion of FIFA 2018: a mathematical analysis, J. Math., 51 (2019), 141–156
-
[34]
M. Saeed, I. Shafique, A. U. Rahman, S. El-Morsyc, Soft algebraic structures embedded with soft members and soft elements: an abstract approach, J. Comput. Appl. Math., 33 (2024), 250–263
-
[35]
D. Sanders, A. Grunden, R. R Dunn, A review of clothing microbiology: The history of clothing and the role of microbes in textiles, Biol. Lett., 17 (2021), 13 pages
-
[36]
M. Saqlain, N. Jafar, S. Moin, M. Saeed, B. Said, Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single-valued neutrosophic hypersoft sets, Neutrosophic Sets Syst., 32 (2020), 317–329
-
[37]
F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability, American Research Press (ARP), Rehoboth, NM (2003)
-
[38]
F. Smarandache, Neutrosophic set—a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297
-
[39]
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539
-
[40]
E. Trillas, Sobre funciones de negación en la teoría de conjuntos difusos, Stochastica, 3 (1979), 47–60
-
[41]
A. Uluta¸s, Sewing machine selection for a textile workshop by using edas method, J. Bus. Res. Turk, 9 (2017), 169–183
-
[42]
A. Uluta¸s, Supplier selection by using a fuzzy integrated model for a textile company, Eng. Econ., 30 (2019), 579–590
-
[43]
A. U. Rahman, M. Saeed, S. S. Alodhaibi, H. A. El-Wahed Khaifa, Decision making algorithmic approaches based on parameterization of neutrosophic set under hypersoft set environment with fuzzy, intuitionistic fuzzy and neutrosophic settings, Comput. Model. Eng. Sci., 128 (2001), 743–777
-
[44]
A. U. Rahman, M. Saeed, H. A. E.-W. Khalifa, W. A. Afifi, Decision making algorithmic techniques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft sets, AIMS Math., 7 (2022), 3866–3895
-
[45]
C.-N. Wang, V. T. H. Viet, T. P. Ho, V. T. Nguyen, V. T. Nguyen, Multi-criteria decision model for the selection of suppliers in the textile industry, Symmetry, 12 (2020), 12 pages
-
[46]
C.-N. Wang, C.-Y. Yang, H.-C. Cheng, A fuzzy multicriteria decision-making (mcdm) model for sustainable supplier evaluation and selection based on triple bottom line approaches in the garment industry, Processes, 7 (2019), 13 pages
-
[47]
J.Wa˛trobski, A. Ba˛czkiewicz, R. Krol,W. Sałabun, Green electricity generation assessment using the codas-comet method, Ecol. Indic., 143 (2022), 32 pages
-
[48]
F. Xiao, EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE Trans. Fuzzy Syst., 28 (2020), 1477–1491
-
[49]
F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 3980–3992
-
[50]
F. Xiao, Generalized quantum evidence theory, Appl. Intell., 53 (2023), 14329–14344
-
[51]
F. Xiao, J. Wen, W. Pedrycz, Generalized divergence-based decision making method with an application to pattern classification, IEEE Trans. Knowl. Data Eng., 35 (2022), 6941–6956
-
[52]
A. Yayla, A. Yıldız, A. Özbek, Fuzzy topsis method in supplier selection and application in the garment industry, Fibres Text. East. Eur., 20 (2012), 20–23
-
[53]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353
-
[54]
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. I, Inf. Sci., 8 (1975), 199–249
-
[55]
A. Zarbini-Sydani, A. Karbasi, E. Atef-Yekta, Evaluating and selecting supplier in textile industry using hierarchical fuzzy topsis, Indian J. Sci. Technol., 4 (2011), 1322–1334
-
[56]
S. A. M. Zubair, Single-Valued Neutrosophic Uncertain Linguistic Set Based on Multi-Input Relationship and Semantic Transformation, J. Fuzzy Ext. Appl., 4 (2023), 257–270
-
[57]
R. M. Zulqarnain, X. L. Xin, M. Saqlain, M. Saeed, F. Smarandache, M. I. Ahamad, Some fundamental operations on interval valued neutrosophic hypersoft set with their properties, Neutrosophic Sets Syst., 40 (2021), 134–148