Iterative computational results for SEIAR worm propagation model using fractal-fractional approach
Volume 38, Issue 4, pp 430--445
https://dx.doi.org/10.22436/jmcs.038.04.02
Publication Date: January 24, 2025
Submission Date: November 11, 2024
Revision Date: November 27, 2024
Accteptance Date: December 15, 2024
Authors
J. Alzabut
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia.
- Department of Industrial Engineering, OSTIM Technical University, 06374 Ankara, Turkiye.
- Center for Research and Innovation, Asia International University, Yangiobod MFY, G\'ijduvon street, House 74, Bukhara, Uzbekistan.
R. Janagaraj
- Department of Mathematics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India.
A. G. M. Selvam
- Department of Mathematics, Sacred Heart College, Tirupattur-635601, Tamil Nadu, India.
R. Dhineshbabu
- Department of Science and Humanities, R.M.K. College of Engineering and Technology (Autonomous), Thiruvallur-601 206, Tamil Nadu, India.
H. Khan
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia.
- Department of Mathematics, Shaheed Benazir Bhutto Uniersity, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan.
Abstract
The current work introduces a new fractal-fractional modeling approach for simulating worm-attacking dynamics in computer networks, all while keeping these motivations in mind.
\[\textbf{Problem statement.}\] A computational and theoretical analysis of SEIR worm propagation model with the use of fractal-fractional operators.
\[ \textbf{Main results.}\] The work includes existence, uniqueness, stability, and numerical simulation results. Existence results are analyzed using applications and fixed-point theory. Lagrange's interpolation polynomial forms are used to solve the non-dimensional fractal-fractional model of worm propagation in computer networks numerically.
\[\textbf{Implications.}\] The solution is tested for a particular case using numerical values from readily and freely accessible sources. In comparison to classical and fractional solutions, the FF dynamical systems are more general, as can be seen from the graphical findings. These problems can further be analysed in the stochastic version for further deeper and scientific studies.
Share and Cite
ISRP Style
J. Alzabut, R. Janagaraj, A. G. M. Selvam, R. Dhineshbabu, H. Khan, Iterative computational results for SEIAR worm propagation model using fractal-fractional approach, Journal of Mathematics and Computer Science, 38 (2025), no. 4, 430--445
AMA Style
Alzabut J., Janagaraj R., Selvam A. G. M., Dhineshbabu R., Khan H., Iterative computational results for SEIAR worm propagation model using fractal-fractional approach. J Math Comput SCI-JM. (2025); 38(4):430--445
Chicago/Turabian Style
Alzabut, J., Janagaraj, R., Selvam, A. G. M., Dhineshbabu, R., Khan, H.. "Iterative computational results for SEIAR worm propagation model using fractal-fractional approach." Journal of Mathematics and Computer Science, 38, no. 4 (2025): 430--445
Keywords
- Computer networks
- fractal-fractional derivative
- results of existence
- solutions of stability
- computational simulations
MSC
References
-
[1]
E. A. Algehyne, I. Muhammad, Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel, Chaos Solitons Fractals, 150 (2021), 9 pages
-
[2]
G. M. S. Amirtharaj, J. Rajendran, V. Dhakshinamoorthy, Discretization and chaos control in a fractional order predatorprey harvesting model, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 70 (2021), 950–964
-
[3]
A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406
-
[4]
A. Atangana, A. Akgül, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134
-
[5]
C. M. Batistela, J. R. C. Piqueira, SIRA computer viruses propagation model: mortality and robustness, Int. J. Appl. Comput. Math., 4 (2018), 19 pages
-
[6]
S. Bouriah, M. Benchohra, S. Gülyaz Özyurt, Terminal value problem for neutral fractional functional differential equations with Hilfer-Katugampola fractional derivative, Filomat, 37 (2023), 7131–7147
-
[7]
L. Chen, K. Hattaf, J. Sun , Optimal control of a delayed SLBS computer virus model, Phys. A, 427 (2015), 224–250
-
[8]
M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci. (Ruse), 4 (2010), 1021–1032
-
[9]
S. Dhaniya, A. Kumar, A. Khan, T. Abdeljawad, M. A. Alqudah, Existence results of Langevin equations with Caputo- Hadamard fractional operator, J. Math., 2023 (2023), 12 pages
-
[10]
J. C. Frauenthal, Mathematical modeling in epidemiology, Springer-Verlag, Berlin-New York (1980)
-
[11]
Q. Gao, J. Zhuang, Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model, Appl. Math. Comput., 368 (2020), 25 pages
-
[12]
J. D. Hernández Guillén, A. Martín del Rey, L. Hernández Encinas, Study of the stability of a SEIRS model for computer worm propagation, Phys. A, 479 (2017), 411–421
-
[13]
M. Higazy, G. M. Selvam, R. Janagaraj, Chaotic dynamics of a novel 2D discrete fractional order Ushiki map, Fractals, 29 (2021), 11 pages
-
[14]
S. Hosseini, M. A. Azgomi, The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks, Phys. A, 512 (2018), 803–817
-
[15]
N. Keshri, B. K. Mishra, Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network, Chaos Solitons Fractals, 68 (2014), 151–158
-
[16]
A. Khan, T. Abdeljawad, M. A. Alqudah, Neural networking study of worms in a wireless sensor model in the sense of fractal fractional, AIMS Math., 8 (2023), 26406–26424
-
[17]
A. Khan, T. Abdeljawad, H. Khan, A numerical scheme for the generalized ABC fractional derivative based on Lagrange interpolation polynomial, Fractals, 30 (2022), 11 pages
-
[18]
H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: existence and stability theories along with numerical simulations, Math. Comput. Simulation, 198 (2022), 455–473
-
[19]
H. Khan, J. Alzabut, A. Shah, Z. Y. He, S. Etemad, S. Rezapour, A. Zada, On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 16 pages
-
[20]
H. Khan, J. Alzabut, O. Tunç, M. K. A. Kaabar, A fractal-fractional COVID-19 model with a negative impact of quarantine on the diabetic patients, Results Control Optim., 10 (2023), 1–15
-
[21]
H. Khan, M. Aslam, A. H. Rajpar, Y.-M. Chu, S. Etemad, S. Rezapour, H. Ahmad, A new fractal-fractional hybrid model for studying climate change on coastal ecosystems from the mathematical point of view, Fractals, 2024 (2024), 15 pages
-
[22]
A. Khan, M. I. Liaqat, M. A. Alqudah, T. Abdeljawad, Analysis of the conformable temporal-fractional swift–hohenberg equation using a novel computational technique, Fractals, 31 (2023), 17 pages
-
[23]
H. Khan, A. H. Rajpar, J. Alzabut, M. Aslam, S. Etemad, S. Rezapour, On a fractal-fractional-based modeling for influenza and its analytical results, Qual. Theory Dyn. Syst., 23 (2024), 21 pages
-
[24]
Z. Laadjal, T. Abdeljawad, F. Jarad, Some results for two classes of two-point local fractional proportional boundary value problems, Filomat, 37 (2023), 7199–7216
-
[25]
J. D. Murray, Mathematical Biology I: An Introduction, Springer-Verlag, New York (2002)
-
[26]
J. Sabatier, O. P. Agrawal, J. T. Machado, Advances in Fractional Calculus, Springer, Dordrecht (2007)
-
[27]
A. G. M. Selvam, R. Janagaraj, Numerical analysis of a fractional order discrete prey-predator system with functional response, Int. J. Eng. Sci. Technol., 7 (2018), 681–684
-
[28]
A. G. M. Selvam, R. Janagaraj, M. Jacintha, Dynamical analysis of a discrete fractional order prey-predator system incorporating a prey refuge with Holling type II response, J. Phys.: Conf. Ser., 1597 (2020), 1–11
-
[29]
A. G. M. Selvam, S. G. Winster, R. Janagaraj, G. M. Jones, Modeling worm proliferation in wireless sensor networks with discrete fractional order system, Int. J. Recent Technol. Eng., 8 (2020), 1815–1820
-
[30]
K. Shah, A. Khan, B. Abdalla, K. A. Khan, T. Abdeljawad, A mathematical model for Nipah virus disease by using piecewise fractional order Caputo derivative, Fractals, 2024 (2024), 10 pages
-
[31]
A. Singh, A. K. Awasthi, K. Singh, P. K. Srivastava, Modeling and analysis of worm propagation in wireless sensor networks, Wirel. Pers. Commun., 98 (2018), 2535–2551
-
[32]
M. S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations, IEEE Trans. Ind. Electron., 55 (2008), 4094–4101
-
[33]
J. A. Tenreiro Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, A. F. Galhano, Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 34 pages
-
[34]
O. Tunç, C. Tunç, Solution estimates to Caputo proportional fractional derivative delay integro-differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 117 (2023), 13 pages
-
[35]
O. Tunç, C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 117 (2023), 18 pages
-
[36]
O. Tunç, C. Tunç, On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple time-varying delays, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118 (2024), 20 pages
-
[37]
I. Ullah, Dynamics behaviours of N-kink solitons in conformable Fisher–Kolmogorov–Petrovskii–Piskunov equation, Eng. Comput., 2024 (2024),
-
[38]
Y. Wang, S. Liu, A. Khan, On fractional coupled logistic maps: Chaos analysis and fractal control, Nonlinear Dyn., 111 (2023), 5889–5904
-
[39]
X. Xiao, P. Fu, C. Dou, Q. Li, G. Hu, S. Xia, Design and analysis of SEIQR worm propagation model in mobile internet, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 341–350
-
[40]
H. Zhou, Y. Wen, H. Zhao, Modeling and analysis of active-benign worms and hybrid-benign worms, In: Sixth International Conference on Networking, IEEE, 44 (2007), 958–964