Cyclic sums of comparative indices and oscillation theory of symplectic difference systems
Volume 38, Issue 4, pp 479--501
https://dx.doi.org/10.22436/jmcs.038.04.05
Publication Date: February 11, 2025
Submission Date: August 08, 2024
Revision Date: October 26, 2024
Accteptance Date: January 08, 2025
Authors
J. Elyseeva
- Department of Applied Mathematics, Moscow State University of Technology, Vadkovskii per. 3a, 101472, Moscow, Russia.
Abstract
In this paper, we generalize the notion of the comparative index which has fundamental applications in oscillation theory of symplectic difference systems and linear differential Hamiltonian systems. We introduce cyclic sums \(\mu_c(Y_1,Y_2,\ldots,Y_m)\) and \(\mu_c^{*}(Y_1,Y_2,\ldots,Y_m),\,m\ge 2\) of the comparative indices for the set of \(n\)-dimensional Lagrangian subspaces. We formulate and prove main properties of the cyclic sums, in particular, we connect the cyclic sums of the comparative indices with the number of positive and negative eigenvalues of \(mn\times mn\) symmetric matrices defined in terms of the Wronskians \(Y_i^T J Y_j\), \(i,j=1,\ldots,m.\) We present first applications of the cyclic sums in the oscillation theory of the discrete symplectic systems connecting the number of focal points of their conjoined bases with the positive and negative inertia of symmetric matrices.
Share and Cite
ISRP Style
J. Elyseeva, Cyclic sums of comparative indices and oscillation theory of symplectic difference systems, Journal of Mathematics and Computer Science, 38 (2025), no. 4, 479--501
AMA Style
Elyseeva J., Cyclic sums of comparative indices and oscillation theory of symplectic difference systems. J Math Comput SCI-JM. (2025); 38(4):479--501
Chicago/Turabian Style
Elyseeva, J.. "Cyclic sums of comparative indices and oscillation theory of symplectic difference systems." Journal of Mathematics and Computer Science, 38, no. 4 (2025): 479--501
Keywords
- Symplectic difference systems
- focal points
- comparative index
- symmetric eigenvalue problems
MSC
References
-
[1]
A. A. Abramov, On the computation of the eigenvalues of a nonlinear spectral problem for Hamiltonian systems of ordinary differential equations, Zh. Vychisl. Mat. Mat. Fiz., 41 (2001), 29–38
-
[2]
A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney (1974)
-
[3]
G. Berkolaiko, G. Cox, Y. Latushkin, S. Sukhtaiev, Duistermaat’s triple index and the difference of hermitian matrices, Preprint arXiv:2412.20825v1, (2024), 15 pages
-
[4]
D. S. Bernstein, Matrix mathematics: theory, facts, and formulas, Princeton University Press, Princeton (2009)
-
[5]
M. Bohner, O. Došlý, Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math., 27 (1997), 707–743
-
[6]
M. Bohner, O. Došlý, Positivity of block tridiagonal matrices, SIAM J. Matrix Anal. Appl., 20 (1998), 182–195
-
[7]
M. Bohner, W. Kratz, R. Šimon Hilscher, Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter, Math. Nachr., 285 (2012), 1343–1356
-
[8]
S. E. Cappell, R. Lee, E. Y. Miller, On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121–186
-
[9]
O. Došlý, J. Elyseeva, R. Šimon Hilscher, Symplectic difference systems: oscillation and spectral theory, Birkhäuser/Springer, Cham (2019)
-
[10]
J. V. Elyseeva, The comparative index for conjoined bases of symplectic difference systems, World Sci. Publ., Hackensack, NJ, (2007), 168–177
-
[11]
Y. V. Eliseeva, A comparative index for solutions of symplectic systems of difference equations, Differ. Equ., 45 (2009), 431–444
-
[12]
J. Elyseeva, Generalized oscillation theorems for symplectic difference systems with nonlinear dependence on spectral parameter, Appl. Math. Comput., 251 (2015), 92–107
-
[13]
J. Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index, J. Math. Anal. Appl., 444 (2016), 1260–1273
-
[14]
J. Elyseeva, Oscillation theorems for linear Hamiltonian systems with nonlinear dependence on the spectral parameter and the comparative index, Appl. Math. Lett., 90 (2019), 15–22
-
[15]
J. Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian systems without monotonicity, Monatsh. Math., 193 (2020), 305–328
-
[16]
J. Elyseeva, Cyclic sums of comparative indices and their applications, arXiv preprint arXiv:2202.01041, (2022), 18 pages
-
[17]
J. Elyseeva, P. Šepitka, R. Šimon Hilscher, Comparative index and Hörmander index in finite dimension and their connections, Filomat, 37 (2023), 5243–5257
-
[18]
R. Hilscher, Disconjugacy of symplectic systems and positive definiteness of block tridiagonal matrices, Rocky Mountain J. Math., 29 (1999), 1301–1319
-
[19]
B. D. Iriˇcanin, S. Stevi´c, Some systems of nonlinear difference equations of higher order with periodic solutions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 499–507
-
[20]
M. Kashiwara, P. Schapira, Sheaves on Manifolds, in: Grundlehren der MathematischenWissenschaften, Springer-Verlag, Berlin (1990)
-
[21]
W. Kratz, Discrete oscillation, J. Difference Equ. Appl., 9 (2003), 135–147
-
[22]
G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974/75), 269–292
-
[23]
W. T. Reid, Sturmian theory for ordinary differential equations, Springer-Verlag, New York-Berlin (1980)
-
[24]
P. Šepitka, R. Šimon Hilscher, Comparative index and Sturmian theory for linear Hamiltonian systems, J. Differ. Equ., 262 (2017), 914–944
-
[25]
P. Šepitka, R. Šimon Hilscher, Singular Sturmian comparison theorems for linear Hamiltonian systems, J. Differ. Equ., 269 (2020), 2920–2955
-
[26]
G. Stefanidou, G. Papaschinopoulos, On a generalized cyclic-type system of difference equations with maximum, Electron. J. Qual. Theory Differ. Equ., 2022 (2022), 20 pages
-
[27]
S. Stevi´c, Representations of solutions to linear and bilinear difference equations and systems of bilinear difference equations, Adv. Difference Equ., 2018 (2018), 21 pages
-
[28]
S. Stevi´c, J. Diblík, B. Iriˇcanin, Z. Šmarda, On a third-order system of difference equations with variable coefficients, Abstr. Appl. Anal., 2012 (2012), 22 pages
-
[29]
S. Stevi´c, B. Iriˇcanin, W. Kosmala, Z. Šmarda, Note on a solution form to the cyclic bilinear system of difference equations, Appl. Math. Lett., 111 (2021), 8 pages
-
[30]
Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263–296
-
[31]
F. Zhang, The Schur complement and its applications, Springer-Verlag, New York (2005)