Multiple solutions for a singular fractional Kirchhoff problem
Authors
M. A. Alyami
- Department of Mathematics and Statistics, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia.
Abstract
In this manuscript, we employed some variational techniques to investigate the existence and the multiplicity of solutions for a fractional equation of Kirchhoff type governed by a non-local elliptic integro-differential operator. More precisely, we use the Mountain pass theorem to establish the existence of a solution for such a problem. Moreover, we use the symmetric version of the mountain pass theorem for even functional, to demonstrate the existence of infinitely many solutions. An example is presented at the end of this work to illustrate our main results.
Share and Cite
ISRP Style
M. A. Alyami, Multiple solutions for a singular fractional Kirchhoff problem, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 1--10
AMA Style
Alyami M. A., Multiple solutions for a singular fractional Kirchhoff problem. J Math Comput SCI-JM. (2025); 39(1):1--10
Chicago/Turabian Style
Alyami, M. A.. "Multiple solutions for a singular fractional Kirchhoff problem." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 1--10
Keywords
- Critical point
- Kirchhoff problems
- non-local operators
- variational methods
MSC
References
-
[1]
G. Abdeljabbar, Multiplicity of nontrivial solutions of a class of fractional p-Laplacian problem, Z. Anal. Anwend., 34 (2015), 309–319
-
[2]
D. Applebaum, Lévy processes—from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336–1347
-
[3]
G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699–714
-
[4]
G. M. Bisci, Sequences of weak solutions for fractional equations, Math. Res. Lett., 21 (2014), 241–253
-
[5]
G. M. Bisci, B. A. Pansera, Three weak solutions for non-local fractional equations, Adv. Nonlinear Stud., 14 (2014), 619–629
-
[6]
H. Brezis, Analyse fonctionnelle, Masson, Paris (1983)
-
[7]
L. Caffarelli, Non-local diffusions, drifts and games, In: Nonlinear partial differential equations, Springer, Heidelberg, 7 (2012), 37–52
-
[8]
R. Chammem, A. Ghanmi, M. Mechergui, Combined effects in nonlinear elliptic equations involving fractional operators, J. Pseudo-Differ. Oper. Appl., 14 (2023), 18 pages
-
[9]
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573
-
[10]
J. M. do Ó, X. He, P. K. Mishra, Fractional Kirchoff problem with critical indefinite nonlinearity, Math. Nachr., 292 (2019), 615–632
-
[11]
X. Dou, X. He, Multiplicity of solutions for a fractional Kirchhoff type equation with a critical nonlocal term, ract. Calc. Appl. Anal., 26 (2023), 1941–1963
-
[12]
I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353
-
[13]
S. Fareh, K. Akrout, A. Ghanmi, D. D. Repovš, Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities, Adv. Nonlinear Anal., 12 (2023), 16 pages
-
[14]
M. Ferrara, L. Guerrini, B. Zhang, Multiple solutions for perturbed non-local fractional Laplacian equations, Electron. J. Differ. Equ., 2013 (2013), 10 pages
-
[15]
M. Ferrara, G. Molica Bisci, B. Zhang, Existence of weak solutions for non-local fractional problems via Morse theory, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2483–2499
-
[16]
A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156–170
-
[17]
A. Ghanmi, Existence of nonnegative solutions for a class of fractional p-Laplacian problems, Nonlinear Stud., 22 (2015), 373–379
-
[18]
A. Ghanmi, K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Fract. Differ. Calc., 6 (2016), 201–217
-
[19]
A. Ghanmi, K. Saoudi, A multiplicity results for a singular problem involving the fractional p-Laplacian operator, Complex Var. Elliptic Equ., 61 (2016), 1199–1216
-
[20]
F. Gharehgazlouei, J. R. Graef, S. Heidarkhani, L. Kong, Existence and multiplicity of solutions to a fractional p- Laplacian elliptic Dirichlet problem, Electron. J. Differ. Equ., 2023 (2023), 15 pages
-
[21]
A. Ghobadi, S. Heidarkhani, Multiple solutions for nonlocal fractional Kirchhoff type problems, Differ. Equ. Appl., 14 (2022), 597–608
-
[22]
A. Ghobadi, S. Heidarkhani, Multiple solutions for fractional differential equations with p-Laplacian through variational method, Adv. Stud. Euro-Tbil. Math. J., 17 (2024), 111–121
-
[23]
N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 6 (1989), 321–330
-
[24]
X.-M. He, W.-M. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser., 26 (2010), 387–394
-
[25]
O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer-Verlag, Paris (1993)
-
[26]
B. Khamessi, A. Ghanmi, Multiplicity of solutions for a singular Kirchhoff-type problem, Filomat, 37 (2023), 9103–9117
-
[27]
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305
-
[28]
D. Li, F. Chen, Y. Wu, Y. Ana, Multiple solutions for a class of p-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 106 (2020), 8 pages
-
[29]
F.-F. Liao, S. Heidarkhani, A. Salari, Existence results for Kirchhoff nonlocal fractional equations, Kragujevac J. Math., 49 (2025), 17–30
-
[30]
R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898
-
[31]
R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137
-
[32]
X. Wang, L. Zhang, Existence and multiplicity of weak positive solutions to a class of fractional Laplacian with a singular nonlinearity, Results Math., 74 (2019), 18 pages
-
[33]
M. Willem, Minimax theorems, Birkhäuser Boston, Boston, MA (1996)
-
[34]
Z. Wu, H. Chen, An existence result for super-critical problems involving the fractional p-Laplacian in RN, Appl. Math. Lett., 135 (2023), 8 pages
-
[35]
M. Xiang, B. Zhang, M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021–1041
-
[36]
H. Xiaoming, Z. Wenming, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70 (2009), 1407–1414
-
[37]
L. Zhang, X. Tang, S. Chen, Multiple solutions for fractional Kirchhoff equation with critical or supercritical nonlinearity, Appl. Math. Lett., 119 (2021), 7 pages
-
[38]
J. Zuo, D. Choudhuri, D. D. Repovš, On critical variable-order Kirchhoff type problems with variable singular exponent, J. Math. Anal. Appl., 514 (2022), 18 pages