Continuous dynamical systems approach to analyzing quadratic stochastic operators
Authors
M. Zannon
- Department of Mathematical, Faculty of Science, Tafila Technical University, P.O. Box 179, zip code 66110, Tafila, Jordan.
Abstract
This paper investigates the behavior of quadratic stochastic operators using continuous dynamical systems. The Euler method is applied to convert a discrete system into a continuous one, and numerical methods are used to solve the resulting differential equations. The operator is defined in a two-dimensional simplex and the dynamics are analyzed by dividing the simplex into six regions. The results show that the dynamic of the operator is dependent on the value of a specific parameter. The use of continuous dynamical systems is shown to be an effective method for understanding the behavior of quadratic stochastic operators.
Share and Cite
ISRP Style
M. Zannon, Continuous dynamical systems approach to analyzing quadratic stochastic operators, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 11--29
AMA Style
Zannon M., Continuous dynamical systems approach to analyzing quadratic stochastic operators. J Math Comput SCI-JM. (2025); 39(1):11--29
Chicago/Turabian Style
Zannon, M.. "Continuous dynamical systems approach to analyzing quadratic stochastic operators." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 11--29
Keywords
- Quadratic stochastic operators
- continuous dynamical systems
- Euler method
- numerical methods
MSC
References
-
[1]
A. Alsarayreh, I. Qaralleh, M. Z. Ahmad, ξ(as)-quadratic stochastic operators in two-dimensional simplex and their behavior, JP J. Algebra, Number Theory Appl., 39 (2017), 737–770
-
[2]
A. Alsarayreh, I. Qaralleh, M. Z. Ahmad, Derivation of three-dimensional evolution algebra, JP J. Algebra, Number Theory Appl., 39 (2017), 425–444
-
[3]
S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Stat., 13 (1942), 53–61
-
[4]
N. N. Ganikhodzhaev, An application of the theory of gibbs distributions to mathematical genetics, Dokl. Math., 61 (2000), 321–323
-
[5]
R. Ganikhodzhaev, F. Mukhamedov, A. Pirnapasov, I. Qaralleh, Genetic Volterra algebras and their derivations, Comm. Algebra, 46 (2018), 1353–1366
-
[6]
R. Ganikhodzhaev, F. Mukhamedov, U. Rozikov, Quadratic stochastic operators and processes: results and open problems, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14 (2011), 279–335
-
[7]
J. Hofbauer, V. Hutson, W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol., 25 (1987), 553–570
-
[8]
J. Hofbauer, K. Sigmund, The theory of evolution and dynamical systems, Cambridge University Press, Cambridge (1988)
-
[9]
U. U. Jamilov, U. A. Rozikov, The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex, Sb. Math., 200 (2009), 81–94
-
[10]
H. Kesten, Quadratic transformations: A model for population growth. II, Adv. Appl. Probab., 2 (1970), 179–228
-
[11]
S. T. Li, D. M. Li, G. K. Qu, On stability and chaos of discrete population model for a singlespecies with harvesting, Harbin University of Science and Technology, (2006)
-
[12]
A. J. Lotka, Undamped oscillations derived from the law of mass action, J. Am. Chem. Soc., 42 (1920), 1595–1599
-
[13]
Y. I. Lyubich, The Bernstein problem in mathematical genetics and Bernstein algebras, Kluwer Acad. Publ., Dordrecht, 303 (1994), 241–244
-
[14]
F. Mukhamedov, H. Akin, S. Temir, On infinite dimensional quadratic Volterra operators, J. Math. Anal. Appl., 310 (2005), 533–556
-
[15]
F. Mukhamedov, N. Ganikhodjaev, Quantum quadratic operators and processes, Springer, Cham (2015)
-
[16]
F. Mukhamedov, A. Hanum, M. Jamal, On ξs-quadratic stochastic operators in 2-dimensional simplex, Proc. the 6th IMT-GT Conf. Math., Stat. Appl., (2010), 159–172
-
[17]
F. Mukhamedov, C. H. Pah, A. Rosli, On non-ergodic Volterra cubic stochastic operators, Qual. Theory Dyn. Syst., 18 (2019), 1225–1235
-
[18]
F. Mukhamedov, I. Qaralleh, On derivations of genetic algebras, J. Phys., 533 (2014), 10 pages
-
[19]
F. Mukhamedov, I. Qaralleh, W. Rozali, On ξ(a) -quadratic stochastic operators on 2d simplex, Sains Malays., 43 (2014), 1275–1281
-
[20]
F. Mukhamedov, M. Saburov, On homotopy of Volterrian quadratic stochastic operators, Appl. Math. Inf. Sci., 4 (2010), 47–62
-
[21]
F. Mukhamedov, M. Saburov, I. Qaralleh, Classification of ξ(s)-quadratic stochastic operators on 2d simplex, J. Phys., 435 (2013), 8 pages
-
[22]
F. Mukhamedov, M. Saburov, I. Qaralleh, On ξ(s)-quadratic stochastic operators on two-dimensional simplex and their behavior, Abstr. Appl. Anal., 2013 (2013), 12 pages
-
[23]
M. Plank, Hamiltonian structures for the n-dimensional Lotka-Volterra equations, J. Math. Phys., 36 (1995), 3520–3534
-
[24]
I. Qaralleh, F. Mukhamedov, Volterra evolution algebras and their graphs, Linear Multilinear Algebra, 69 (2021), 2228–2244
-
[25]
U. A. Rozikov, N. B. Shamsiddinov, On non-Volterra quadratic stochastic operators generated by a product measure, Stoch. Anal. Appl., 27 (2009), 353–362
-
[26]
U. A. Rozikov, A. Zada, On l-Volterra quadratic stochastic operators, Dokl. Akad. Nauk, 79 (2009), 168–170
-
[27]
U. A. Rozikov, A. Zada, On dynamics of ℓ-Volterra quadratic stochastic operators, Int. J. Biomath., 3 (2010), 143–159
-
[28]
U. A. Rozikov, A Zada, ℓ-Volterra quadratic stochastic operators: Lyapunov functions, trajectories, Appl. Math. Inf. Sci., 6 (2012), 329–335
-
[29]
U. A. Rozikov, U. U. Zhamilov, F-quadratic stochastic operators, Mat. Zametki, 83 (2008), 606–612
-
[30]
M. Saburov, Some strange properties of quadratic stochastic volterra operators, World Appl. Sci. J., 21 (2013), 94–97
-
[31]
F. E. Udwadia, N. Raju, Some global properties of a pair of coupled maps: quasi-symmetry, periodicity, and synchronicity, Phys. D, 111 (1998), 16–26
-
[32]
S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, New York (1964)
-
[33]
V. Volterra, Lois de fluctuation de la population de plusieurs espèces coexistant dans le même milieu, Assoc. Franc. Lyon, 1926 (1927), 96–98
-
[34]
M. Zannon, Derivation of some nilpotent evolution algebra, JP J. Algebra, Number Theory Appl., 45 (2020), 121–136