Modeling and controlling Leptospirosis transmission in humans and rodents
Authors
V. Saravanan
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamilnadu-600 127, India.
R. Chinnathambi
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamilnadu-600 127, India.
F. A. Rihan
- Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al-Ain, 15551, UAE.
Abstract
Leptospirosis is a commonly undiagnosed and under-reported bacterial disease that affects both animals and humans. Studies suggest that the risk of infection varies based on individuals' occupations and living environments. This study employs a mathematical model that assesses the impact of rodent-borne diseases on human populations. A disease-causing agent in the environment can lead to human infection. Additionally, humans can become infected by interacting with infected rodents. The purpose of this paper is to construct a SIR (human)-SI (rodent) model of bacterial populations with Holling type II functional responses, as well as chemical disinfectants. Infection-free and endemic steady states are examined for positivity, boundedness of solutions, and stability. The disease transmission is reduced through non-pharmaceutical interventions as well as the infected rodent populations are controlled by integrated pest management. Using sensitivity analysis, we evaluate the effect of parameters' uncertainty. We study the optimal conditions to reduce bacterial density in the environment by considering control variables as chemical disinfectants and treatment functions. Numerical simulations confirm the theoretical findings.
Share and Cite
ISRP Style
V. Saravanan, R. Chinnathambi, F. A. Rihan, Modeling and controlling Leptospirosis transmission in humans and rodents, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 30--49
AMA Style
Saravanan V., Chinnathambi R., Rihan F. A., Modeling and controlling Leptospirosis transmission in humans and rodents. J Math Comput SCI-JM. (2025); 39(1):30--49
Chicago/Turabian Style
Saravanan, V., Chinnathambi, R., Rihan, F. A.. "Modeling and controlling Leptospirosis transmission in humans and rodents." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 30--49
Keywords
- Integrated pest management
- leptospirosis
- non-pharmaceutical intervention
- optimal control
- sensitivity analysis
- stability
MSC
- 34D20
- 37N35
- 65P40
- 90C31
- 92B05
References
-
[1]
H. T. Alemneh, A co-infection model of dengue and leptospirosis diseases, Adv. Difference Equ., 2020 (2020), 23 pages
-
[2]
Antima, S. Banerjee, Modeling the dynamics of leptospirosis in India, Sci. Rep., 13 (2023), 15 pages
-
[3]
G. P. Balakrishnan, R. Chinnathambi, F. A. Rihan, A fractional-order control model for diabetes with restraining and time-delay, J. Appl. Math. Comput., 69 (2023), 3403–3420
-
[4]
C. Benjamín, P. Luis, C.-L. Fernando, Modeling the effects of pH variation and bacteriocin synthesis on bacterial growth, Appl. Math. Model., 110 (2022), 285–297
-
[5]
A. Bhalraj, A. Azmi, M. H. Mohd, Analytical and numerical solutions of Leptospirosis model, Int. J. Math. Comput. Sci., 16 (2021), 949–961
-
[6]
S. Chadsuthi, C. Modchang, Y. Lenbury, S. Iamsirithaworn, W. Triampo, Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time-series and ARIMAX analyses, Asian Pac. J. Trop. Med., 5 (2012), 539–546
-
[7]
J. Croda, A. N. D. Neto, R. A. Brasil, C. Pagliari, A. C. Nicodemo, M. I. S. Duarte, Leptospirosis pulmonary haemorrhage syndrome is associated with linear deposition of immunoglobulin and complement on the alveolar surface, Clin. Microbiol. Infect., 16 (2010), 593–599
-
[8]
K. Das, R. Chinnathambi, M. N. Srinivas, F. A. Rihan, An analysis of time-delay epidemic model for TB, HIV, and AIDS co-infections, Results Control Optim., 12 (2023), 13 pages
-
[9]
O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382
-
[10]
L. Douchet, C. Goarant, M. Mangeas, C. Menkes, S. Hinjoy, V. Herbreteau, Unraveling the invisible leptospirosis in mainland Southeast Asia and its fate under climate change, Sci. Total Environ., 832 (2022), 12 pages
-
[11]
H. A. Engida, D. M. Theuri, D. K. Gathungu, J. Gachohi, Optimal control and cost-effectiveness analysis for leptospirosis epidemic, J. Biol. Dyn., 17 (2023), 20 pages
-
[12]
H. A. Engida, D. M. Theuri, D. Gathungu, J. Gachohi, H. T. Alemneh, A mathematical model analysis for the transmission dynamics of leptospirosis disease in human and rodent populations, Comput. Math. Methods Med., 2022 (2022), 23 pages
-
[13]
M. Farman, A. Akgül, M. Sultan, S. Riaz, H. Asif, P. Agarwal, M. K. Hassani, Numerical study and dynamics analysis of diabetes mellitus with co-infection of COVID-19 virus by using fractal fractional operator, Sci. Rep., 14 (2024), 19 pages
-
[14]
M. Farman, N. Gokbulut, U. Hurdoganoglu, E. Hincal, K. Suer, Fractional order model of MRSA bacterial infection with real data fitting: Computational Analysis and Modeling, Comput. Biol. Med., 173 (2024),
-
[15]
M. Farman, A. Shehzad, K. S. Nisar, E. Hincal, A. Akgul, A mathematical fractal-fractional model to control tuberculosis prevalence with sensitivity, stability, and simulation under feasible circumstances, Comput. Biol. Med., 178 (2024),
-
[16]
D. I. Galan, A. A. Roess, S. V. C. Pereira, M. C. Schneider, Epidemiology of human leptospirosis in urban and rural areas of Brazil, 2000–2015, PLoS ONE, 16 (2021), 20 pages
-
[17]
M. A. Gallega, M. V. Simoy, Mathematical modeling of leptospirosis: A dynamic regulated by environmental carrying capacity, Chaos Solitons Fractals, 152 (2021), 7 pages
-
[18]
R. K. Gupta, R. K. Rai, P. K. Tiwari, A. K. Misra, M. Martcheva, A mathematical model for the impact of disinfectants on the control of bacterial diseases, J. Biol. Dyn., 17 (2023), 28 pages
-
[19]
M. A. Khan, S. F. Saddiq, S. Islam, I. Khan, S. Shafie, Dynamic Behavior of Leptospirosis Disease with Saturated Incidence Rate, Int. J. Appl. Comput. Math., 2 (2016), 435–452
-
[20]
S. Kundu, H. J. Alsakaji, F. A. Rihan, S. Maitra, R. K. Upadhyay, Investigating the dynamics of a delayed stagestructured epidemic model with saturated incidence and treatment functions, Eur. Phys. J. Plus, 137 (2022),
-
[21]
S. Lenhart, J. T. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, FL (2007)
-
[22]
Y.-H. Liu, Y.-H. Chen, C.-M. Chen, Fulminant Leptospirosis Presenting with Rapidly Developing Acute Renal Failure and Multiorgan Failure, Biomedicines, 12 (2024), 13 pages
-
[23]
H. D. Ngoma, P. R. Kiogora, I. Chepkwony, A Fractional Order Model of Leptospirosis Transmission Dynamics with Environmental Compartment, Global J. Pure Appl. Math., 18 (2022), 81–110
-
[24]
A. Ngwira, S. Manda, E. D. Karimuribo, S. I. Kimera, C. Stanley, Spatial analysis of livestock disease data in sub- Saharan Africa: A scoping review, Sci. Afr., 23 (2024), 14 pages
-
[25]
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The mathematical theory of optimal processes, Interscience Publishers John Wiley & Sons, New York-London (1962)
-
[26]
F. A. Rihan, Delay differential equations and applications to biology, Springer, Singapore (2021)
-
[27]
U. A. M. Roslan, N. Y. Narayanan, Sensitivity analysis for the dynamics of Leptospirosis disease, Malays. J. Math. Sci., 13 (2019), 77–84
-
[28]
S. Ullah, M. F. Khan, S. A. A. Shah, M. Farooq, M. A. Khan, M. B. Mamat, Optimal control analysis of vector-host model with saturated treatment, Eur. Phys. J. Plus, 135 (2020), 25 pages
-
[29]
D. Vandroux, C. Chanareille, B. Delmas, B.-A. Gauzere, N. Allou, L. Raffray, M.-C. Jaffar-Bandjee, O. Martinet, C. Ferdynus, J. Jabot, Acute respiratory distress syndrome in leptospirosis, J. Crit. Care, 51 (2019), 165–169
-
[30]
World Health Organization, Human leptospirosis: Guidance for diagnosis, Surveillance and control, , (2003),
-
[31]
Y. Xu, Q. Ye, Human leptospirosis vaccines in China, Hum. Vaccines Immunother., 14 (2018), 984–993