On a hybrid class of \(p\)-Laplacian boundary value problems with modified Mittag-Leffler kernel: application to nonlinear and mixed pharmacokinetic models
Authors
S. Ramasamy
- Department of Mathematics, School of Sciences, Arts \(\&\) Media, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641114, Tamil Nadu, India.
K. Velusamy
- Department of Mathematics, School of Sciences, Arts \(\&\) Media, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641114, Tamil Nadu, India.
D. Baleanu
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
M. A. Mani
- Department of Mathematics, School of Arts, Sciences, Humanities and Education, SASTRA Deemed to be University, Thanjavur-613401, Tamil Nadu, India.
Abstract
This study investigates a class of hybrid fractional pantograph differential equations (HFPDEs) under the \(p\)-Laplacian operator \(LO\), employing the extended Mittag-Leffler kernel (\(MMLK\)). We establish the existence and uniqueness of solutions using Krasnoselskii and Banach fixed point theorems (FPTs), and further explore their stability properties. To bridge the gap between theory and practice, we develop a novel numerical method based on Lagrange's interpolation polynomial. The effectiveness of this method is demonstrated through its application to nonlinear and mixed pharmacokinetic models. A specific case is provided to confirm the validity of the theoretical results.
Share and Cite
ISRP Style
S. Ramasamy, K. Velusamy, D. Baleanu, M. A. Mani, On a hybrid class of \(p\)-Laplacian boundary value problems with modified Mittag-Leffler kernel: application to nonlinear and mixed pharmacokinetic models, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 50--70
AMA Style
Ramasamy S., Velusamy K., Baleanu D., Mani M. A., On a hybrid class of \(p\)-Laplacian boundary value problems with modified Mittag-Leffler kernel: application to nonlinear and mixed pharmacokinetic models. J Math Comput SCI-JM. (2025); 39(1):50--70
Chicago/Turabian Style
Ramasamy, S., Velusamy, K., Baleanu, D., Mani, M. A.. "On a hybrid class of \(p\)-Laplacian boundary value problems with modified Mittag-Leffler kernel: application to nonlinear and mixed pharmacokinetic models." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 50--70
Keywords
- Fractional-order
- existence and uniqueness
- stability
- FPTs
- \(MMLK\) fractional derivative
MSC
References
-
[1]
B. Ahmad, S. K. Ntouyas, Initial-value problems for hybrid Hadamard fractional differential equations, Electron. J. Differ. Equ., 2014 (2014), 8 pages
-
[2]
M. Al-Refai, D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 30 (2022), 7 pages
-
[3]
S. Alshammari, M. Alshammari, M. S. Abdo, Nonlocal hybrid integro-differential equations involving Atangana-Baleanu fractional operators, J. Math., 2023 (2023), 11 pages
-
[4]
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769
-
[5]
D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 16 pages
-
[6]
M. Caputo, Linear models of dissipation whose Q is almost frequency independent. II, Geophys. J. R. Astr. Soc., 13 (1967), 529–539
-
[7]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85
-
[8]
W. Chen, H. Sun, X. Li, Fractional derivative modeling in mechanics and engineering, Springer, Beijing, China (2022)
-
[9]
M. Derhab, On a conformable fractional differential equations with maxima, Malaya J. Mat., 12 (2024), 85–103
-
[10]
R. Devi, D. N. Pandey, Approximation of solution for generalized Basset equation with finite delay using Rothe’s approach, Malaya J. Mat., 11 (2023), 25–42
-
[11]
B. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equ. Appl., 2 (2010), 465–486
-
[12]
B. Dhage, Existence and attractivity theorems for nonlinear hybrid fractional differential equations with anticipation and retardation, J. Nonlinear Funct. Anal., 2020 (2020), 18 pages
-
[13]
B. C. Dhage, G. T. Khurape, A. Y. Shete, J. N. Salunkhe, Existence and approximate solutions for nonlinear hybrid fractional integro-differential equations, Int. J. Anal. Appl., 11 (2016), 157–167
-
[14]
B. C. Dhage, V. Lakshimikantham, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 414–424
-
[15]
O. Egbelowo, Nonlinear elimination of drugs in one-compartment pharmacokinetic models: nonstandard finite difference approach for various routes of administration, Math. Comput. Appl., 23 (2018), 21 pages
-
[16]
Eiman, K. Shah, M. Sarwar, D. Baleanu, Study on Krasnoselskii’s fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Difference Equ., 2020 (2020), 9 pages
-
[17]
M. Etefa, G. M. N’Guérékata, P. Ngnepieba, O. S. Iyiola, On a generalized fractional differential Cauchy problem, Malaya J. Mat., 11 (2023), 80–93
-
[18]
A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York (2003)
-
[19]
H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M-Ur. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application, AIMS Math., 8 (2023), 6609–6625
-
[20]
H. Khan, J. Alzabut, H. Gulzar, Existence of solutions for hybrid modified ABC-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model, Alex. Eng. J., 70 (2023), 665–672
-
[21]
A. Khan, Z. A. Khan, T. Abdeljawad, H. Khan, Analytical analysis of fractional-order sequential hybrid system with numerical application, Adv. Contin. Discrete Models, 2022 (2022), 19 pages
-
[22]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[23]
M. M. Matar, A. A. Lubbad, J. Alzabut, On p-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives, Math. Methods Appl. Sci., 47 (2024), 10799–10816
-
[24]
R. Metzler, W. G. Glöckle, T. F. Nonnenmacher, Fractional model equation for anomalous diffusion, Phys. A, 211 (1994), 13–24
-
[25]
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York (1993)
-
[26]
Z. Odibat, D. Baleanu, New solutions of the fractional differential equations with modified Mittag-Leffler kernel, J. Comput. Nonlinear Dyn., 18 (2023), 9 pages
-
[27]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and Derivatives of the Fractional and Some of Their Applications, Nauka i Tehkhnika, Minsk (1987)
-
[28]
L.-J. Shen, Fractional derivative models for viscoelastic materials at finite deformations, Int. J. Solids Struct., 190 (2020), 226–237
-
[29]
I. Slimane, Z. Dahmani, J. J. Nieto, T. Abdeljawad, Existence and stability for a nonlinear hybrid differential equation of fractional order via regular Mittag-Leffler kernel, Math. Methods Appl. Sci., 46 (2023), 8043–8053
-
[30]
S. T. Sutar, K. D. Kucche, On nonlinear hybrid fractional differential equations with Atangana-Baleanu-Caputo derivative, Chaos Solitons Fractals, 143 (2021), 11 pages
-
[31]
D. Vivek, O. Baghani, K. Kanagarajan, Existence results for hybrid fractional differential equations with Hilfer fractional derivative, Casp. J. Math. Sci., 9 (2020), 294–304
-
[32]
L. Zhao, Y. Jiang, Existence and stability for a coupled hybrid system of fractional differential equations with Atangana- Baleanu-Caputo derivative, J. Math., 2022 (2022), 12 pages
-
[33]
Y. Zhao, S. Sun, Z. Han, Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312–1324