Solving multi-order fractional differential equations using covariant contraction principle
Authors
N. Hussain
- Department of Mathematics, King Abdulaziz University, Jeddah, 80203, 21589, Saudi Arabia.
N. Alharbi
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia.
G. Basendwah
- Department of Mathematics, King Abdulaziz University, Jeddah, 80203, 21589, Saudi Arabia.
Abstract
This article introduces the concept of a generalized fuzzy bipolar metric space which extends the framework of fuzzy bipolar metric spaces. Within this novel setting, we establish the Ćirić quasi-contraction theorem tailored to generalized fuzzy bipolar metric spaces. To achieve these results, we introduce the notions of covariant and contravariant contractions, which represent significant advances in this field. To illustrate the applicability of the theoretical findings, detailed examples are provided. Moreover, the study delves into the well-posedness of the fuzzy fixed point problem, demonstrating the existence and uniqueness of solutions for multi-order fractional differential equations.
Share and Cite
ISRP Style
N. Hussain, N. Alharbi, G. Basendwah, Solving multi-order fractional differential equations using covariant contraction principle, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 71--89
AMA Style
Hussain N., Alharbi N., Basendwah G., Solving multi-order fractional differential equations using covariant contraction principle. J Math Comput SCI-JM. (2025); 39(1):71--89
Chicago/Turabian Style
Hussain, N., Alharbi, N., Basendwah, G.. "Solving multi-order fractional differential equations using covariant contraction principle." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 71--89
Keywords
- Generalized fuzzy bipolar metric space
- fuzzy fixed point results
- well-posedness of fixed point problem
- multi-order fractional differential equations
- integral boundary conditions
MSC
References
-
[1]
M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660
-
[2]
B. Azarnavid, M. Emamjomeh, M. Nabati, A. Dinmohammadi, An efficient iterative method for multi-order nonlinear fractional differential equations based on the integrated Bernoulli polynomials, Comput. Appl. Math., 43 (2024), 17 pages
-
[3]
A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196–204
-
[4]
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385–389
-
[5]
V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245–252
-
[6]
B. H. Guswanto, Suroto, N. Istikaanah, Multi-order fractional nonlinear evolution equations system, Partial Differ. Eq. Appl. Math., 9 (2024), 14 pages
-
[7]
N. Hussain, N. Alharbi, G. Basendwah, Solving fractional boundary value problems with nonlocal mixed boundary conditions using covariant JS-contractions, Symmetry, 16 (2024), 19 pages
-
[8]
N. Hussain, N. Alharbi, G. Basendwah, Fixed-Point Results with Applications in Generalized Neutrosophic Rectangular b-Metric Spaces, Axioms, 13 (2024), 25 pages
-
[9]
N. Hussain, C. Vetro, F. Vetro, Fixed point results for alpha-implicit contractions with application to integral equations, Nonlinear Anal.: Model. Control, 21 (2016), 362–378
-
[10]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[11]
I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika (Prague), 11 (1975), 336–344
-
[12]
C. Li, Y. Cui, L. Chen, Fixed point results on closed ball in convex rectangular b-metric spaces and applications, J. Funct. Spaces, 2022 (2022), 13 pages
-
[13]
G. Mani, A. J. Gnanaprakasam, S. Kumar, Ö. Ege, M. De la Sen, Fixed-point theorems for nonlinear contraction in fuzzy-controlled bipolar metric spaces, Axioms, 12 (2023), 12 pages
-
[14]
G. Mani, A. J. Gnanaprakasam, Z. D. Mitrovi´c, M.-F. Bota, Solving an integral equation via fuzzy triple controlled bipolar metric spaces, Mathematics, 9 (2021), 14 pages
-
[15]
G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, A. Elsonbaty, O. A. A. Abdelnaby, S. Radenovi´c, Application of fixed points in bipolar controlled metric space to solve fractional differential equation, Fractal Fract., 7 (2023), 20 pages
-
[16]
A. Moussaoui, N. Hussain, S. Melliani, H. Nasr, M. Imdad, Fixed point results via extended FZ−simulation functions in fuzzy metric spaces, J. Inequal. Appl., 2022 (2022), 24 pages
-
[17]
P. P. Murthy, C. P. Dhuri, S. Kumar, R. Ramaswamy, M. A. S. Alaskar, S. Radenovi´c, Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space, Fractal Fract., 6 (2022), 12 pages
-
[18]
A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373
-
[19]
V. Parvaneh, S. J. Hosseini Ghoncheh, Fixed points of (Ψ, Φ) Ω-contractive mappings in ordered P-metric spaces, Glob. Anal. Discrete Math., 4 (2019), 15–29
-
[20]
K. Roy, M. Saha, Generalized contractions and fixed point theorems over bipolar convex b-metric spaces with an application to homotopy theory, Math. Vesnik, 72 (2020), 281–296
-
[21]
K. Roy, M. Saha, Sequential bipolar metric space and well-posedness of fixed point problems, Int. J. Nonlinear Anal. Appl., 12 (2021), 387–398
-
[22]
M. Sangurlu Sezen, Some special functions in orthogonal fuzzy bipolar metric spaces and their fixed point applications, Numer. Methods Partial Differ. Equ., 38 (2022), 794–802
-
[23]
B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334
-
[24]
J.-P. Sun, L. Fang, Y.-H. Zhao, Q. Ding, Existence and uniqueness of solutions for multi-order fractional differential equations with integral boundary conditions, Bound. Value Probl., 2024 (2024), 14 pages
-
[25]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353
-
[26]
Z. Zararsız, M. Riaz, Bipolar fuzzy metric spaces with application, Comput. Appl. Math., 41 (2022), 19 pages
-
[27]
K. Zhang, Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators, AIMS Math., 9 (2024), 1358–1372