Dynamics of a stochastic COVID-19 epidemic in the presence of white noise
Authors
S. Hussain
- Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 2440, Saudi Arabia.
E. N. Madi
- Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Terengganu, Malaysia.
N. Iqbal
- Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 2440, Saudi Arabia.
I. A. R. Moghrabi
- Information Systems and Technology Department, Kuwait Technical College, Kuwait.
- Department of Computer Science, College of Arts and Sciences, University Central Asia, Naryn, Kyrgyz Republic.
I. M. Sulaiman
- Institute of Strategic Industrial Decision Modelling, School of Quantitative sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia.
- Faculty of Education and Arts, Sohar University, Sohar 311, Oman.
Abstract
This paper presents a stochastic mathematical model to enhance the understanding of COVID-19 dynamics, addressing limitations often found in deterministic frameworks that may overlook critical random fluctuations in disease spread. By introducing white noise perturbations, this model provides a more realistic representation of epidemic dynamics, allowing for a detailed analysis of the effects of stochasticity on disease transmission. In comparison to existing deterministic models, our approach captures the inherent unpredictability in epidemic behavior more effectively. Our numerical simulations reveal that COVID-19 eradication occurs when the threshold parameter \(\mathscr{R}{\text{r}}^* < 1\), while persistence is observed when \(\mathscr{R}{\text{r}}^* > 1\). These findings underscore the importance of considering stochastic elements in epidemic modeling and highlight the superiority of stochastic models in capturing the complexities of real-world scenarios. By offering a more nuanced understanding of disease dynamics, this research contributes valuable insights that could inform more effective public health strategies.
Share and Cite
ISRP Style
S. Hussain, E. N. Madi, N. Iqbal, I. A. R. Moghrabi, I. M. Sulaiman, Dynamics of a stochastic COVID-19 epidemic in the presence of white noise, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 90--104
AMA Style
Hussain S., Madi E. N., Iqbal N., Moghrabi I. A. R., Sulaiman I. M., Dynamics of a stochastic COVID-19 epidemic in the presence of white noise. J Math Comput SCI-JM. (2025); 39(1):90--104
Chicago/Turabian Style
Hussain, S., Madi, E. N., Iqbal, N., Moghrabi, I. A. R., Sulaiman, I. M.. "Dynamics of a stochastic COVID-19 epidemic in the presence of white noise." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 90--104
Keywords
- Stochastic model
- numerical scheme
- white noise
- existence and persistence
- COVID-19
MSC
References
-
[1]
J. Bao, C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375
-
[2]
A. Bernheim , X. Mei, M. Huang, Y. Yang, Z. A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology, 295 (2020), 685–691
-
[3]
L. Bertolaccini, L. Spaggiari, The hearth of mathematical and statistical modelling during the coronavirus pandemic, Interact. Cardiovasc. Thorac. Surg., 30 (2020), 801–820
-
[4]
J. F.-W. Chan, S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, H.-W. Tsoi, S. K.-F. Lo, K.-H. Chan, V. K.-M. Poon, W.-M. Chan, J. D. Ip, J.-P. Cai, V. C.-C. Cheng, H. Chen, C. K.-M. Hui, K.-Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, The Lancet, 395 (2020), 514–523
-
[5]
N. Dalal, D. Greenhalgh, X. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341 (2008), 1084–1101
-
[6]
H. Getahun, I. Smith, K. Trivedi, S. Paulin, H. H. Balkhy, Tackling antimicrobial resistance in the COVID-19 pandemic, Bull. World Health Organ., 98 (2020), 442–442A
-
[7]
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2011), 525–546
-
[8]
S. Hussain, E. N. Madi, H. Khan, S. Etemad, S. Rezapour, T. Sitthiwirattham, N. Patanarapeelert, Investigation of the Stochastic Modeling of COVID-19 with Environmental Noise from the Analytical and Numerical Point of View, Mathematics, 9 (2021), 20 pages
-
[9]
S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, M. K. A. Kaabar, On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Spaces, 2022 (2022), 9 pages
-
[10]
A. Lahrouz, L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Statist. Probab. Lett., 83 (2013), 960–968
-
[11]
Q. Liu, D. Jiang, T. Hayat, B. Ahmad, Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps, Nonlinear Anal. Hybrid Syst., 27 (2018), 29–43
-
[12]
X. Mao, Stochastic differential equations and applications, Horwood Publishing Limited, Chichester (1997)
-
[13]
R. Memarbashi, S. M. Mahmoudi, A dynamic model for the COVID-19 with direct and indirect transmission pathways, Math. Methods Appl. Sci., 44 (2021), 5873–5887
-
[14]
R. K. Mohapatra, L. Pintilie, V. Kandi, A. K. Sarangi, D. Das, R. Sahu, L. Perekhoda, The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy, Chem. Biol. Drug Des., 96 (2020), 1187–1208
-
[15]
A. E. Owoyemi, I. M. Sulaiman, P. Kumar, V. Govindaraj, M. Mamat, Some novel mathematical analysis on the fractional-order 2019-nCoV dynamical model, Math. Methods Appl. Sci., 46 (2023), 4466–4474
-
[16]
A. E. Owoyemi, I. M. Sulaiman, M. Mamat, S. E. Olowo, Stability and Bifurcation Analysis in a Fractional-order Epidemic Model with Sub-optimal Immunity, Nonlinear Incidence and Saturated Recovery Rate, AENG Int. J. Appl. Math., 51 (2021), 11 pages
-
[17]
A. E. Owoyemi, I. M. Sulaiman, M. Mamat, S. E. Olowo, O. A. Adebiyi, Z. A. Zakaria, Analytic numeric solution of coronavirus (COVID-19) pandemic model in fractional-order, Commun. Math. Biol. Neurosci., 2020 (2020), 18 pages
-
[18]
N. Petrosillo, G. Viceconte, O. Ergonul, G. Ippolito, E. Petersen, COVID-19, SARS and MERS: are they closely related?, Clin. Microbiol. Infect., 26 (2020), 729–734
-
[19]
Y. Song, A. Miao, T. Zhang, X. Wang, J. Liu, Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible, Adv. Differ. Equ., 2018 (2018), 11 pages
-
[20]
F. Sun, Dynamics of an imprecise stochastic Holling II one-predator two-prey system with jumps, arXiv preprint arXiv, (2006), 8 pages
-
[21]
E. Tornatore, S. M. Buccellato, P. Vetro, On a stochastic disease model with vaccination, Rend. Circ. Mat. Palermo (2), 55 (2006), 223–240
-
[22]
D. Yang, J. L. Leibowitz, The structure and functions of coronavirus genomic 3’ and 5’ ends, Virus Res., 206 (2015), 120–133
-
[23]
Y. Zhao, D. Jiang, D. O’Regan, The extinction and persistence of the stochastic SIS epidemic model with vaccination, Phys. A, 392 (2013), 4916–4927
-
[24]
L. Zhu, H. Hu, A stochastic SIR epidemic model with density dependent birth rate, Adv. Differ. Equ., 2015 (2015), 12 pages