A perception of the applications of bicomplex fractional Laplace transform
Authors
A. Thirumalai
- School of Advanced Sciences, Vellore Institute of Technology, Vandalur-Kelambakkam road, Chennai, 600127, Tamilnadu, India.
K. Muthunagai
- School of Advanced Sciences, Vellore Institute of Technology, Vandalur-Kelambakkam road, Chennai, 600127, Tamilnadu, India.
Abstract
In this paper, we have used the bicomplex fractional Laplace transform to solve differential equations arising in various fields, such as heat transfer, population dynamics, electric circuits, and glucose absorption. Our study provides a deeper understanding of the mathematical relationships between bicomplex fractional Laplace transforms, Bessel functions, and the beta and gamma functions. Additionally, we have validated the effectiveness and applicability of our approach by solving the differential equation governing blood alcohol concentrations, using these theoretical insights.
Share and Cite
ISRP Style
A. Thirumalai, K. Muthunagai, A perception of the applications of bicomplex fractional Laplace transform, Journal of Mathematics and Computer Science, 39 (2025), no. 1, 105--115
AMA Style
Thirumalai A., Muthunagai K., A perception of the applications of bicomplex fractional Laplace transform. J Math Comput SCI-JM. (2025); 39(1):105--115
Chicago/Turabian Style
Thirumalai, A., Muthunagai, K.. "A perception of the applications of bicomplex fractional Laplace transform." Journal of Mathematics and Computer Science, 39, no. 1 (2025): 105--115
Keywords
- Bicomplex fractional Laplace transform
- bicomplex fractional inverse Laplace transform
- fractional differential equations
MSC
References
-
[1]
A. Ahmad, S. Murtaza, R. Khan, Application of Laplace transform technique of variable order to the generalized Caputo fractional model of second grade nanofluid, Acadlore Trans. Appl. Math. Stat., 2 (2024), 133–149
-
[2]
A. Akbar, H. Ullah, M. A. Z. Raja, K. S. Nisar, S. Islam, M. Shoaib, A design of neural networks to study mhd and heat transfer in two phase model of nano-fluid flow in the presence of thermal radiation, Waves Random Complex Media, (2022), 1–24
-
[3]
R. Almeida, N. R. O. Bastos, M. T. T. Monteiro, Modeling some real phenomena by fractional differential equations, Math. Methods Appl. Sci., 39 (2016), 4846–4855
-
[4]
M. Alsulami, M. Al-Mazmumy, M. A. Alyami, A. S. Alsulami, Generalized Laplace Transform with Adomian Decomposition Method for Solving Fractional Differential Equations Involving Ψ-Caputo Derivative, Mathematics, 12 (2024), 16 pages
-
[5]
K. Ananda, Y. H. Gangadharaiah, Applications of Laplace Transforms in Engineering and Economics, nt. J. Trend Res. Dev., 3 (2016), 358–361
-
[6]
M. C. Anumaka, Analysis and applications of Laplace/Fourier transformations in electric circuit, Int. J. Res. Rev. Appl. Sci., 12 (2012), 333–339
-
[7]
M. S. Bhullar, Study on properties and applications of Laplace transformation: A review, Pramana Res. J., 8 (2018), 246–251
-
[8]
E. A. Coddington, An introduction to ordinary differential equations, Prentice-Hall, Englewood Cliffs (1961)
-
[9]
A. Daci, Mathematical Models For Population Projection in Albania, J. Multidiscip. Eng. Sci. Technol., 3 (2016), 5486–5489
-
[10]
A. Daci, S. Tola, Laplace transform, application in population growth, Int. J. Recent Technol. Eng., 8 (2019), 954–957
-
[11]
S. Das, Control system design using finite Laplace transform theory, arXiv preprint arXiv:1101.4347, (2011), 31 pages
-
[12]
N. Gkrekas, Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives, Math. Biol., 19 (2024), 61–76
-
[13]
A. Ivi´c, Some applications of Laplace transforms in analytic number theory, Novi Sad J. Math., 45 (2015), 31–44
-
[14]
A. S. Kokane, B. R. Wadkar, Applications of Laplace Transform in science and technology, J. Phys.: Conf. Ser., 1913 (2021), 10 pages
-
[15]
A. Kumar, P. Kumar, Bicomplex version of Laplace transform, Int. J. Eng. Technol., 3 (2011), 225–232
-
[16]
X. Li, W. Ma, X. Bao, Generalized fractional calculus on time scales based on the generalized Laplace transform, Chaos Solitons Fractals, 180 (2024), 9 pages
-
[17]
D. Murat, On an application of Laplace transforms, New Trends Math. Sci., 5 (2017), 193–198
-
[18]
M. A. Z. Raja, K. S. Nisar, M. Shoaib, A. Akbar, H. Ullah, S. Islam, A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip, AIMS Math., 8 (2023), 12062–12092
-
[19]
K. Reddy, K. Kumar, J. Satish, S. Vaithyasubramanian, A review on applications of Laplace transformations in various fields, J. Adv. Res. Dyn. Control Syst., 9 (2017), 14–24
-
[20]
D. Santina, Kamran, M. Asif, S. Aljawi, N. Mlaiki, Application of the inverse Laplace transform techniques to solve the generalized Bagley–Torvik equation including Caputo’s fractional derivative, Partial Differ. Equ. Appl. Math., 10 (2024), 10 pages
-
[21]
L. S. Sawant, Applications of Laplace transform in engineering fields, Int. Res. J. Eng. Technol., 5 (2018), 3100–3105
-
[22]
A. M. Sedletskii, Fourier transforms and approximations, Gordon and Breach Science Publishers, Amsterdam (2000)
-
[23]
C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40 (1982), 413–467
-
[24]
U. P. Sharma, R. Agarwal, Bicomplex Laplace transform of fractional order, properties and applications, J. Comput. Anal. Appl., 30 (2022), 370–385
-
[25]
M. Shoaib, R. A. Khan, H. Ullah, K. S. Nisar, M. A. Z. Raja, S. Islam, B. F. Felemban, I. S. Yahia, Heat Transfer Impacts on Maxwell Nanofluid Flow over a Vertical Moving Surface with MHD Using Stochastic Numerical Technique via Artificial Neural Networks, Coatings, 11 (2021), 26 pages
-
[26]
A. K. Thakur, R. Kumar, G. Sahu, Application of laplace transform on solution of fractional differential equation, J. Comput. Math. Sci., 9 (2018), 478–484