Existence and uniqueness results of the AB-Caputo type derivative in impulsive fractional differential equations
Authors
K. Venkatachalam
- Department of Mathematics, Nandha Engineering College (Autonomous), Erode - 638 052, Tamil Nadu, India.
B. Batiha
- Mathematics Department, Faculty of Science and Information Technology, Jadara University, Irbid 21110, Jordan.
B. Almarri
- General studies department, Jubail Industrial College, 8244 Rd Number 6, Al Huwaylat, Al Jubail 35718, Saudi Arabia.
M. S. Kumar
- Department of Mathematics, Paavai Engineering College (Autonomous), Namakkal - 637 018, Tamil Nadu, India.
O. Bazighifan
- Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout, Yemen.
- Jadara Research Center, Jadara University, Irbid 21110, Jordan.
Abstract
In this work, we study the fractional differential equations solutions of Atangana-Baleanu-Caputo, which are subject to integral and impulsive boundary conditions.
In addition, the Banach Contraction Mapping Principle and the Krasnoselskii fixed point theorems are employed for showing the existence and uniqueness of the theorems.
An illustration is provided to support the outcomes of the results.
Share and Cite
ISRP Style
K. Venkatachalam, B. Batiha, B. Almarri, M. S. Kumar, O. Bazighifan, Existence and uniqueness results of the AB-Caputo type derivative in impulsive fractional differential equations, Journal of Mathematics and Computer Science, 39 (2025), no. 4, 407--417
AMA Style
Venkatachalam K., Batiha B., Almarri B., Kumar M. S., Bazighifan O., Existence and uniqueness results of the AB-Caputo type derivative in impulsive fractional differential equations. J Math Comput SCI-JM. (2025); 39(4):407--417
Chicago/Turabian Style
Venkatachalam, K., Batiha, B., Almarri, B., Kumar, M. S., Bazighifan, O.. "Existence and uniqueness results of the AB-Caputo type derivative in impulsive fractional differential equations." Journal of Mathematics and Computer Science, 39, no. 4 (2025): 407--417
Keywords
- AB-Caputo fractional
- integro-differential equations
- fixed point technique
- existence
- uniqueness
MSC
References
-
[1]
T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016 (2016), 18 pages
-
[2]
M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 21 pages
-
[3]
M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), 8 pages
-
[4]
B. Ahmad, G.Wang, A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations, Comput. Math. Appl., 62 (2011), 1341–1349
-
[5]
D. Baleanu, Fractional variational principles in action, Phys. Scr., T136 (2009), 5 pages
-
[6]
D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 15 pages
-
[7]
M. Benchohra, F. Berhoun, Impulsive fractional differential equations with variable times, Comput. Math. Appl., 59 (2010), 1245–1252
-
[8]
M. Benchohra, S. Bouriah, J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard-type fractional differential equations with impulses, Mediterr. J. Math., 14 (2017), 21 pages
-
[9]
M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York (2006)
-
[10]
S. Brahimi, A. Merad, A. Kılıçman, Theoretical and numerical aspect of fractional differential equations with purely integral conditions, Mathematics, 9 (2021), 26 pages
-
[11]
J. Cao, Y. Luo, G. Liu, Some results for impulsive fractional differential inclusions with infinite delay and sectorial operators in Banach spaces, Appl. Math. Comput., 273 (2016), 237–257
-
[12]
Y.-K. Chang, A. Anguraj, P. Karthikeyan, Existence results for initial value problems with integral condition for impulsive fractional differential equations, J. Fract. Calc. Appl., 2 (2012), 1–10
-
[13]
J. V. L. Chew, A. Sunarto, J. Sulaiman, M. F. Asli, Fractional Newton explicit group method for time-fractional nonlinear porous medium equations, Prog. Fract. Differ. Appl., 10 (2024), 391–398
-
[14]
O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh, J. H. Asad, Fractional treatment: an accelerated mass-spring system, Rom. Rep. Phys., 74 (2022), 13 pages
-
[15]
S. Djennadi, N. Shawagfeh, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021),
-
[16]
G. Gokul, R. Udhayakumar, Approximate controllability for Hilfer fractional stochastic non-instantaneous impulsive differential system with Rosenblatt process and Poisson jumps, Qual. Theory Dyn. Syst., 23 (2024), 26 pages
-
[17]
R. Herrmann, Gauge invariance in fractional field theories, Phys. Lett. A, 372 (2008), 5515–5522
-
[18]
A. Irguedi, K. Nisse, S. Hamani, Functional impulsive fractional differential equations involving the Caputo-Hadamard derivative and integral boundary conditions, Int. J. Anal. Appl., 21 (2023), 1–14.
-
[19]
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16–20
-
[20]
K. Karthikeyan, G. S. Murugapandian, P. Karthikeyan, O. Ege, New results on fractional relaxation integro-differential equations with impulsive conditions, Filomat, 37 (2023), 5775–5783
-
[21]
P. Karthikeyan, K. Venkatachalam, S. Abbas, Existence results for fractional impulsive integro-differential equations with integral conditions of Katugampola type, Acta Math. Univ. Comenian. (N.S.), 90 (2021), 421–436
-
[22]
M. S. Kumar, M. Deepa, J. Kavitha, V. Sadhasivam, Existence theory of fractional order three-dimensional differential system at resonance, Math. Model. Control, 3 (2023), 127–138
-
[23]
V. Lakshmikantham, D. D. Ba˘ınov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific Publishing Co., Teaneck, NJ (1989)
-
[24]
N. Mehmood, A. Abbas, T. Abdeljawad, A. Akgül, Existence results for ABC-fractional differential equations with non-separated and integral type of boundary conditions, Fractals, 29 (2021), 1–16
-
[25]
S. Momani, O. Abu Arqub, B. Maayah, Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana–Baleanu–Caputo model of the Lienard’s equation, Fractals, 28 (2020), 13 pages
-
[26]
S. Momani, A. Jameel, S. Al-Azawi, Local and global uniqueness theorems on fractional integro-differential equations via Bihari’s and Gronwall’s inequalities, Soochow J. Math., 33 (2007), 619–627
-
[27]
S. Momani, B. Maayah, O. ABU. Arqub, The reproducing kernel algorithm for numerical solution of van der pol damping model in view of the Atangana–Baleanu fractional approach, Fractals, 28 (2020), 12 pages
-
[28]
M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2024), 3339–3352
-
[29]
V. N. Orlov, A. M. Elsayed, E. I. Mahmoud, Two linearized schemes for one-dimensional time and space fractional differential equations, Mathematics, 10 (2022), 16 pages
-
[30]
C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Solitons Fractals, 125 (2019), 194–200
-
[31]
J. Reunsumrit, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Analysis of existence and stability results for impulsive fractional integro-differential equations involving the AB-Caputo derivative under integral boundary conditions, Math. Probl. Eng., 2022 (2022), 18 pages
-
[32]
S. Rezapour, C. T. Deressa, A. Hussain, S. Etemad, R. George, B. Ahmad, A theoretical analysis of a fractional multidimensional system of boundary value problems on the methylpropane graph via fixed point technique, Mathematics, 10 (2022), 26 pages
-
[33]
M. V. Shitikova, Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A Review, Mech. Solids, 57 (2022), 1–33
-
[34]
S. Sivasankar, K. Nadhaprasadh, M. S. Kumar, S. Al-Omari, R. Udhayakumar, New study on Cauchy problems of fractional stochastic evolution systems on an infinite interval, Math. Methods Appl. Sci., 48 (2025), 890–904
-
[35]
S. Sivasankar, R. Udhayakumar, A. Deiveegan, R. George, A. M. Hassan, S. Etemad, Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators, AIMS Math., 8 (2012), 30374–30404
-
[36]
Y. Tian, Z. Bai, Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. Math. Appl., 59 (2010), 2601–2609
-
[37]
C. S. Varun Bose, R. Udhayakumar, A. M. Elshenhab, M. S. Kumar, J.-S. Ro, Discussion on the approximate controllability of Hilfer fractional neutral integro-differential inclusions via almost sectorial operators, Fractal Fract., 6 (2022), 22 pages
-
[38]
K. Venkatachalam, M. S. Kumar, P. Jayakumar, Results on non local impulsive implicit Caputo-Hadamard fractional differential equations, Math. Model. Control, 4 (2024), 286–296
-
[39]
J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron. J. Differ. Equ., 2009 (2009), 8 pages