A refined class of harmonically convex functions and Bullen-Mercer-type inequalities
Authors
S. Ali
- Department of Mathematics, University of Sargodha, P.O. Box 40100, Sargodha, Pakistan.
M. Samraiz
- Department of Mathematics, University of Sargodha, P.O. Box 40100, Sargodha, Pakistan.
S. Naheed
- Department of Mathematics, University of Sargodha, P.O. Box 40100, Sargodha, Pakistan.
M. Vivas-Cortez
- FRACTAL (Fractional Research Convexity Analysis and Their Laboratory Applications, Naturales y Ambientales, Facultad de Ciencias Exactas, Pontificia Universidad Católica del Ecuador, Ecuador.
Y. Elmasry
- Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61466, Saudi Arabia.
Abstract
This paper introduces a new class of convex functions namely the harmonic inverse sine trigonometric convex (HISTC) functions defined over a real vector space, which exhibits unique refinement characteristics. We provide a detailed mathematical formulation and analyze its algebraic properties. Using this refined class, we establish an identity that serves as a foundation to establish refinements of Bullen-Mercer-type inequalities. The derived results are authenticated through 2D and 3D graphs as well as numerical analysis. Additionally, we demonstrate applications of our findings by their use in analyzing means. By discussing the limiting cases, we prove that the main results are general comparing those in the existing literature.
Share and Cite
ISRP Style
S. Ali, M. Samraiz, S. Naheed, M. Vivas-Cortez, Y. Elmasry, A refined class of harmonically convex functions and Bullen-Mercer-type inequalities, Journal of Mathematics and Computer Science, 39 (2025), no. 4, 500--521
AMA Style
Ali S., Samraiz M., Naheed S., Vivas-Cortez M., Elmasry Y., A refined class of harmonically convex functions and Bullen-Mercer-type inequalities. J Math Comput SCI-JM. (2025); 39(4):500--521
Chicago/Turabian Style
Ali, S., Samraiz, M., Naheed, S., Vivas-Cortez, M., Elmasry, Y.. "A refined class of harmonically convex functions and Bullen-Mercer-type inequalities." Journal of Mathematics and Computer Science, 39, no. 4 (2025): 500--521
Keywords
- Harmonically inverse sine trigonometric convex functions
- Bullen-Mercer-type inequality
- Hölder’s inequality
- applications to special means
MSC
References
-
[1]
S. Ali, S. Mubeen, R. S. Ali, G. Rahman, A. Morsy, K. S. Nisar, S. D. Purohit, M. Zakarya, Dynamical significance of generalized fractional integral inequalities via convexity, AIMS Math., 6 (2021), 9705–9730
-
[2]
R. S. Ali, S. Mubeen, S. Ali, G. Rahman, J. Younis, A. Ali, Generalized Hermite-Hadamard-type integral inequalities for h-Godunova-Levin functions, J. Funct. Spaces, 2022 (2022), 12 pages
-
[3]
R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, K. S. Nisar, Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract., 5 (2021), 12 pages
-
[4]
H. Boulares, B. Meftah, A. Moumen, R. Shafqat, H. Saber, T. Alraqad, E. E. Ali, Fractional multiplicative Bullen-type inequalities for multiplicative differentiable functions, Symmetry, 15 (2023), 12 pages
-
[5]
P. S. Bullen, Error estimates for some elementary quadrature rules, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 602 (1978), 97–103
-
[6]
S. I. Butt, Generalized Jensen-Hermite-Hadamard Mercer Type Inequalities for Generalized Strongly Convex Functions on Fractal Sets, Turkish J. Sci., 8 (2023), 51–63
-
[7]
S. I. Butt, P. Agarwal, S. Yousaf, J. L. Guirao, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022 (2022), 18 pages
-
[8]
S. I. Butt, S. Rashid, M. Tariq, M.-K. Wang, Novel refinements via n-polynomial harmonically s-type convex functions and application in special functions, J. Funct. Spaces, 2021 (2021), 17 pages
-
[9]
S. I. Butt, S. Yousaf, A. Asghar, K. A. Khan, H. R. Moradi, New fractional Hermite-Hadamard-Mercer inequalities for harmonically convex function, J. Funct. Spaces, 2021 (2021), 11 pages
-
[10]
M. Çakmak, Refinements of Bullen-type inequalities for different kind of convex functions via Riemann-Liouville fractional integrals involving Gauss hypergeometric function, Gen. Math., 26 (2018), 41–55
-
[11]
M. Çakmak, Some Bullen-type inequalities for conformable fractional integrals, Gen. Math., 28 (2020), 3–17
-
[12]
T. Du, C. Luo, Z. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021),
-
[13]
S. Erden, M. Z. Sarikaya, Generalized Bullen-type inequalities for local fractional integrals and its applications, Palest. J. Math., 9 (2020), 945–956
-
[14]
F. Hezenci, H. Budak, H. Kara, A study on conformable fractional version of Bullen-type inequalities, Turkish J. Math., 47 (2023), 1306–1317
-
[15]
I.˙I¸scan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942
-
[16]
H. Kadakal, Harmonic trigonometrically convexity, Filomat, 37 (2023), 8029–8038
-
[17]
A. M. Mercer, A variant of Jensen’s inequality, J. Inequal. Pure Appl. Math., 4 (2003), 2 pages
-
[18]
M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77 (2015), 5–16
-
[19]
M. Samraiz, T. Atta, S. Naheed, T. Abdeljawad, M. Tanveer Ghaffar, A novel class of integral inequalities with graphical approach and diverse application, Math. Comput. Model. Dyn. Syst., 30 (2024), 156–178
-
[20]
M. Samraiz, F. Nawaz, S. Iqbal, T. Abdeljawad, G. Rahman, K. S. Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, J. Inequal. Appl., 2020 (2020), 19 pages
-
[21]
M. Samraiz, B. Raza, A. Ullah, S. Naheed, M. Vivas-Cortez, New class of convex functions and its significance in Hermite-Hadamard type inequalities, Submitted, (),
-
[22]
H.-N. Shi, J. Zhang, Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions, J. Inequal. Appl., 2013 (2013), 9 pages
-
[23]
M. Tariq, S. K. Awan, S. K. Sahoo, B. Kodamasingh, New integral inequalities via harmonically exponential type sconvex functions, Int. J. Sci. Res. Eng. Dev., 4 (2021), 177–189
-
[24]
M. Vivas-Cortez, M. Z. Javed, M. U. Awan, M. A. Noor, S. S. Dragomir, Bullen-Mercer-type inequalities with applications in numerical analysis, Alex. Eng. J., 96 (2024), 15–33
-
[25]
D. Zhao, M. A. Ali, H. Budak, Z.-Y. He, Some Bullen-type inequalities for generalized fractional integrals, Fractals, 2023 (2023), 11 pages