Approximating fixed points of nonexpansive-type mappings in Hadamard spaces
Authors
W. Worapitpong
- Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand.
P. Chaipunya
- Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand.
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTT Fixed Point Research Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand.
P. Kumam
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTT Fixed Point Research Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand.
S. Salisu
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTT Fixed Point Research Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand.
- Department of Mathematics, Faculty of Natural and Applied Sciences, Sule Lamido University Kafin Hausa, Jigawa, Nigeria.
Abstract
Certain essential properties of a generalized nonexpansive mapping, showcasing an inclusion relation to known mappings within the framework of Hadamard spaces, are investigated in this work. Additionally, a viscosity-type algorithm is proposed for approximating fixed points of such mappings. The strong convergence of the sequences generated by this algorithm is demonstrated under appropriate assumptions. As an application of the findings, the existence of a solution to the variational inequality problem involving the mapping is established. Furthermore, an iterative scheme is derived, exhibiting strong convergence towards solving the variational inequality problem. To demonstrate the implementation of the proposed algorithm, a numerical example is provided in a non-Hilbert CAT(0) space.
Share and Cite
ISRP Style
W. Worapitpong, P. Chaipunya, P. Kumam, S. Salisu, Approximating fixed points of nonexpansive-type mappings in Hadamard spaces, Journal of Mathematics and Computer Science, 39 (2025), no. 4, 522--540
AMA Style
Worapitpong W., Chaipunya P., Kumam P., Salisu S., Approximating fixed points of nonexpansive-type mappings in Hadamard spaces. J Math Comput SCI-JM. (2025); 39(4):522--540
Chicago/Turabian Style
Worapitpong, W., Chaipunya, P., Kumam, P., Salisu, S.. "Approximating fixed points of nonexpansive-type mappings in Hadamard spaces." Journal of Mathematics and Computer Science, 39, no. 4 (2025): 522--540
Keywords
- Convergence analysis
- fixed point
- Hadamard space
- inverse strongly monotone
- nonexpansive mapping
- variational inequality
- viscosity iteration
MSC
- 47H09
- 47H10
- 47J05
- 47J25
- 49J40
- 53C23
References
-
[1]
B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc., 141 (2013), 1029–1039
-
[2]
S. Alizadeh, H. Dehghan, F. Moradlou, Δ-convergence theorems for inverse-strongly monotone mappings in CAT(0) spaces, Fixed Point Theory, 19 (2018), 45–56
-
[3]
K. O. Aremu, C. Izuchukwu, H. A. Abass, O. T. Mewomo, On a viscosity iterative method for solving variational inequality problems in Hadamard spaces, Axioms, 9 (2020), 14 pages
-
[4]
M. Baˇcák, Old and new challenges in Hadamard spaces, Jpn. J. Math., 18 (2023), 115–168
-
[5]
C. Baiocchi, A. Capelo, Variational and quasivariational inequalities, John Wiley & Sons, Inc., New York (1984)
-
[6]
I. D. Berg, I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata, 133 (2008), 195–218
-
[7]
V. Berinde, Iterative approximation of fixed points, Springer, Berlin (2007)
-
[8]
V. Berinde, Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retractiondisplacement condition, Carpathian J. Math., 36 (2020), 27–34
-
[9]
V. Berinde, A modified Krasnosel’ski˘ı-Mann iterative algorithm for approximating fixed points of enriched nonexpansive mappings, Symmetry, 14 (2022), 12 pages
-
[10]
V. Berinde, M. P˘acurar, Recent developments in the fixed point theory of enriched contractive mappings. A survey, Creat. Math. Inform., 33 (2024), 137–159
-
[11]
M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin (1999)
-
[12]
F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197–228
-
[13]
R. E. Bruck, Asymptotic behavior of nonexpansive mappings, Amer. Math. Soc., Providence, RI, 18 (1983), 1–47
-
[14]
F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5–251
-
[15]
C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer-Verlag London, Ltd., London (2009)
-
[16]
C. E. Chidume, A. U. Bello, P. Ndambomve, Strong and Δ-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces, Abstr. Appl. Anal., 2014 (2014), 6 pages
-
[17]
H. Dehghan, J. Rooin, A characterization of metric projection in CAT (0) spaces, arXiv preprint arXiv:1311.4174, (2013), 3 pages
-
[18]
S. Dhompongsa, A. Kaewkhao, B. Panyanak, On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces, Nonlinear Anal., 75 (2012), 459–468
-
[19]
S. Dhompongsa, W. A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35–45
-
[20]
S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 65 (2006), 762–772
-
[21]
S. Dhompongsa, B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579
-
[22]
G. Z. Eskandani, M. Raeisi, On the zero point problem of monotone operators in Hadamard spaces, Numer. Algorithms, 80 (2019), 1155–1179
-
[23]
A. Genel, J. Lindenstrauss, An example concerning fixed points, Israel J. Math, 22 (1975), 81–86
-
[24]
A. Gharajelo, H. Dehghan, Convergence theorems for strict pseudo-contractions in CAT(0) metric spaces, Filomat, 31 (2017), 1967–1971
-
[25]
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150
-
[26]
Z. Jiao, I. Jadlovská, T. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equ., 411 (2024), 227–267
-
[27]
J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., 70 (1995), 659–673
-
[28]
K. Khammahawong, P. Kumam, Generalized Projection Algorithm for Convex Feasibility Problems on Hadamard Manifolds, Nonlinear Convex Anal. Optim., 1 (2022), 25–45
-
[29]
S. H. Khan, M. Abbas, Strong and Δ-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl., 61 (2011), 109–116
-
[30]
W. A. Kirk, Geodesic geometry and fixed point theory, Univ. Sevilla Secr. Publ., Seville, 64 (2003), 195–225
-
[31]
W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., 2004 (2004), 309–316
-
[32]
W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689–3696
-
[33]
W. A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham (2014)
-
[34]
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510
-
[35]
G. Marino, H.-K. Xu, Explicit hierarchical fixed point approach to variational inequalities, J. Optim. Theory Appl., 149 (2011), 61–78
-
[36]
M. S. Minjibir, S. Salisu, Strong and Δ-convergence theorems for a countable family of multi-valued demicontractive maps in Hadamard spaces, Nonlinear Funct. Anal. Appl., 27 (2022), 45–58
-
[37]
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55
-
[38]
S. Saejung, Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl., 2010 (2010), 13 pages
-
[39]
S. Salisu, V. Berinde, S. Sriwongsa, P. Kumam, Approximating fixed points of demicontractive mappings in metric spaces by geodesic averaged perturbation techniques, AIMS Math., 8 (2023), 28582–28600
-
[40]
S. Salisu, V. Berinde, S. Sriwongsa, P. Kumam, On approximating fixed points of strictly pseudocontractive mappings in metric spaces, Carpathian J. Math., 40 (2024), 419–430
-
[41]
S. Salisu, L. Hashim, A. Y. Inuwa, A. U. Saje, Implicit Midpoint Scheme for Enriched Nonexpansive Mappings, Nonlinear Convex Anal. Optim., 1 (2022), 211–225
-
[42]
S. Salisu, P. Kumam, S. Sriwongsa, One step proximal point schemes for monotone vector field inclusion problems, AIMS Math., 7 (2022), 7385–7402
-
[43]
S. Salisu, P. Kumam, S. Sriwongsa, On fixed points of enriched contractions and enriched nonexpansive mappings, Carpathian J. Math., 39 (2023), 237–254
-
[44]
S. Salisu, P. Kumam, S. Sriwongsa, J. Abubakar, On minimization and fixed point problems in Hadamard spaces, Comput. Appl. Math., 41 (2022), 22 pages
-
[45]
S. Salisu, P. Kumam, S. Sriwongsa, A. Y. Inuwa, Enriched multi-valued nonexpansive mappings in geodesic spaces, Rend. Circ. Mat. Palermo (2), 74 (2023), 1435–1451
-
[46]
S. Salisu, S. Sriwongsa, P. Kumam, V. Berinde, ariational inequality and proximal scheme for enriched nonexpansive mappings in CAT(0) spaces, J. Nonlinear Convex Anal., 25 (2024), 1759–1776
-
[47]
C. Suanoom, B. Tanut, T. Grace, The proposition for an CAK-generalized nonexpansive mapping in Hilbert spaces, Bangmod Int. J. Math. Comput. Sci., 8 (2022), 100–108
-
[48]
P. Thammasiri, K. Ungchittrakool, Accelerated hybrid Mann-type algorithm for fixed point and variational inequality problems, Nonlinear Convex Anal. Optim., 1 (2022), 97–111
-
[49]
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 6 (2002), 240–256
-
[50]
Y. Yao, H. Zhou, Y.-C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J. Appl. Math. Comput., 29 (2009), 383–389
-
[51]
E. Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York (1986)