Quantum symmetric analysis of interval-valued mappings based on generalized Hukuhara differences
Authors
M. Z. Javed
- Department of Mathematics, Government College University, Faisalabad, Pakistan.
M. U. Awan
- Department of Mathematics, Government College University, Faisalabad, Pakistan.
C.-E. Stoenoiu
- Department of Electric Machines and Drives, Technical University of Cluj-Napoca, Cluj-Napoca 400027, Romania.
D.-A. Iluțiu-Varvara
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, Cluj-Napoca 400114, Romania.
L. Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, Cluj-Napoca 400641, Romania.
S. S. Dragomir
- Department of Mathematics, College of Engineering \(\&\) Science, Victoria University, Melbourne City, MC 8001, Australia.
Abstract
The primary aim of this investigation is to examine the quantum symmetric differentiability and anti-derivative characteristics of interval-valued (I.V.) mappings utilizing generalized Hukuhara differences. Initially, we present the concepts of the I.V. left quantum symmetric derivative operator and offer its characterization. We present the left quantum symmetric integral operator and its essential properties, grounded in the newly proposed derivative operator. Subsequently, we examine their various essential properties. Finally, we present the applications of our proposed operators to integral inequalities concerning I.V. convex mappings and totally ordered convex mappings. Moreover, the validity of our results is corroborated by numerical and graphical representations.
Share and Cite
ISRP Style
M. Z. Javed, M. U. Awan, C.-E. Stoenoiu, D.-A. Iluțiu-Varvara, L. Jäntschi, S. S. Dragomir, Quantum symmetric analysis of interval-valued mappings based on generalized Hukuhara differences, Journal of Mathematics and Computer Science, 40 (2026), no. 1, 1--21
AMA Style
Javed M. Z., Awan M. U., Stoenoiu C.-E., Iluțiu-Varvara D.-A., Jäntschi L., Dragomir S. S., Quantum symmetric analysis of interval-valued mappings based on generalized Hukuhara differences. J Math Comput SCI-JM. (2026); 40(1):1--21
Chicago/Turabian Style
Javed, M. Z., Awan, M. U., Stoenoiu, C.-E., Iluțiu-Varvara, D.-A., Jäntschi, L., Dragomir, S. S.. "Quantum symmetric analysis of interval-valued mappings based on generalized Hukuhara differences." Journal of Mathematics and Computer Science, 40, no. 1 (2026): 1--21
Keywords
- Convex mapping
- interval-valued mapping
- Hukuhara difference
- symmetric quantum
- center-radius
- Hermite-Hadamard inequality
MSC
- 26A51
- 26D07
- 26D10
- 26D15
- 26D20
References
-
[1]
M. A. Ali, H. Budak, M. Feˇckan, S. Khan, A new version of q-Hermite-Hadamard’s midpoint and trapezoid type inequalities for convex functions, Math. Slovaca, 73 (2023), 369–386
-
[2]
M. A. Ali, H. Budak, G. Murtaza, Y.-M. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 2021 (2021), 18 pages
-
[3]
N. Alp, M. Z. Sarıkaya, M. Kunt, ˙I. ˙I ¸scan, q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi–convex functions, J. King Saud Univ.-Sci., 30 (2018), 193–203
-
[4]
A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178
-
[5]
M. Bilal, A. Iqbal, S. Rastogi, Quantum symmetric analogues of various integral inequalities over finite intervals, J. Math. Inequal., 17 (2023), 615–627
-
[6]
B. Bin-Mohsin, M. U. Awan, M. Z. Javed, H. Budak, A. G. Khan, M. A. Noor, Inclusions involving interval-valued harmonically co-ordinated convex functions and Raina’s fractional double integrals, J. Math., 2022 (2022), 21 pages
-
[7]
B. Bin-Mohsin, M. U. Awan, M. Z. Javed, A. G. Khan, H. Budak, M. V. Mihai, M. A. Noor, Generalized AB-fractional operator inclusions of Hermite-Hadamard’s type via fractional integration, Symmetry, 15 (2023), 21 pages
-
[8]
B. Bin-Mohsin, M. Z. Javed, M. U. Awan, A. G. Khan, C. Cesarano, M. A. Noor, Exploration of quantum Milne- Mercer-type inequalities with applications, Symmetry, 15 (2023), 16 pages
-
[9]
B. Bin-Mohsin, S. Rafique, C. Cesarano, M. Z. Javed, M. U. Awan, A. Kashuri, M. A. Noor, Some general fractional integral inequalities involving LR-bi-convex fuzzy interval-valued functions, Fractal Fract., 6 (2022), 27 pages
-
[10]
B. Bin-Mohsin, M. Z. Javed, M. U. Awan, A. Kashuri, On some new AB–fractional inclusion relations, Fractal Fract., 7 (2023), 21 pages
-
[11]
H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718
-
[12]
Y. Chalco-Cano, A. Flores-Franuliˇc, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472
-
[13]
Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued mappings, Soft Comput., 19 (2015), 3293–3300
-
[14]
T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125
-
[15]
S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA, Victoria University, Melbourne (2000)
-
[16]
T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228
-
[17]
T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued coordinated convex mappings, Chaos Solitons Fractals, 156 (2022), 19 pages
-
[18]
S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On q–Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 19 pages
-
[19]
V. Kac, P. Cheung, Quantum Calculus, Springer, New York (2002)
-
[20]
H. Kalsoom, M. A. Ali, M. Idrees, P. Agarwal, M. Arif, New post quantum analogues of Hermite-Hadamard type inequalities for interval-valued convex functions, Math. Probl. Eng., 2021 (2021), 17 pages
-
[21]
M. G. Khan, P. O. Mohammed, M. A. Noor, K. M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580
-
[22]
M. Kunt, A. W. Baidar, Z. Sanli, Some quantum integral inequalities based on left-right quantum integrals, Turk. J. Sci. Technol., 17 (2022), 343–356
-
[23]
M. Kunt, A. Kashuri, T. Du, A. W. Baidar, Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, AIMS Math., 5 (2020), 5439–5457
-
[24]
M. A. Khan, N. Mohammad, E. R. Nwaeze, Y.-M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 202 (2020), 20 pages
-
[25]
T. Lou, G. Ye, D. Zhao, W. Liu, Iq-Calculus and Iq-Hermite-Hadamard inequalities for interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1–22
-
[26]
R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs (1966)
-
[27]
A. Nosheen, S. Ijaz, K. A. Khan, K. M. Awan, M. A. Albahar, M. Thanoon, Some q–symmetric integral inequalities involving s-convex functions, Symmetry, 15 (2023), 20 pages
-
[28]
J. E. Peajcariaac, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, New York (1992)
-
[29]
M. S. Rahman, A. A. Shaikh, A. K. Bhunia, Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function, Comput. Ind. Eng., 147 (2020),
-
[30]
W. Saleh, B. Meftah, A. Lakhdari, Quantum dual Simpson type inequalities for q–differentiable convex functions, Int. J. Nonlinear Anal. Appl., 14 (2023), 63–76
-
[31]
N. Sharma, S. K. Singh, S. K. Mishra, A. Hamdi, Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals, J. Inequal. Appl., 2021 (2021), 15 pages
-
[32]
L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311–1328
-
[33]
W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793
-
[34]
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 19 pages
-
[35]
Y. Wang, M. Z. Javed, M. U. Awan, B. Bin-Mohsin, B. Meftah, S. Treanta, Symmetric quantum calculus in interval valued frame work: operators and applications, AIMS Math., 9 (2024), 27664–27686
-
[36]
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 14 pages
-
[37]
D. Zhao, T. An, G. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Sets Syst., 396 (2020), 82–101
-
[38]
W. Zhao, V. R. Sherine, T. G. Gerly, A. Britto, G. Xavier, K. Julietraja, P. Chellamani, Symmetric difference operator in quantum calculus, Symmetry, 14 (2022), 24 pages