Extended Grüss type inequalities for generalized \((l,m)\)-fractional integrals with applications
Authors
M. Yousaf
- Department of Mathematics \(\&\) Statistics, University of Southern Punjab, Bosan Road, Multan, Pakistan.
S. Iqbal
- Department of Mathematics \(\&\) Statistics, University of Southern Punjab, Bosan Road, Multan, Pakistan.
M. Samraiz
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
M. Vivas-Cortez
- Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
Abstract
The main motivation of this paper is to establish certain Grüss type inequalities by using the new generalized \((l,m)\)-Riemman-Liouville fractional integrals. We obtain the related results for the geometric, arithmetic, and harmonic \((l,m)\)-Riemman-Liouville fractional integrals as special cases of our general results. Also, we apply the Young's and Cauchy-Schwarz inequalities to obtain the variety of some related estimates. Our findings have potential applications in various fields of mathematical analysis and its related disciplines.
Share and Cite
ISRP Style
M. Yousaf, S. Iqbal, M. Samraiz, M. Vivas-Cortez, Extended Grüss type inequalities for generalized \((l,m)\)-fractional integrals with applications, Journal of Mathematics and Computer Science, 40 (2026), no. 1, 22--37
AMA Style
Yousaf M., Iqbal S., Samraiz M., Vivas-Cortez M., Extended Grüss type inequalities for generalized \((l,m)\)-fractional integrals with applications. J Math Comput SCI-JM. (2026); 40(1):22--37
Chicago/Turabian Style
Yousaf, M., Iqbal, S., Samraiz, M., Vivas-Cortez, M.. "Extended Grüss type inequalities for generalized \((l,m)\)-fractional integrals with applications." Journal of Mathematics and Computer Science, 40, no. 1 (2026): 22--37
Keywords
- Inequalities
- fractional integrals
- means
- kernel
- Young's inequality
MSC
References
-
[1]
T. Akman, B. Yıldız, D. Baleanu, New discretization of Caputo-Fabrizio derivative, Comput. Appl. Math., 37 (2018), 3307–3333
-
[2]
G. AlNemer, M. R. Kenawy, H. M. Rezk, A. A. El-Deeb, M. Zakarya, Fractional Leindler’s Inequalities via Conformable Calculus, Symmetry, 14 (2022), 17 pages
-
[3]
G. AlNemer, S. H. Saker, G. M. Ashry, M. Zakarya, H. M. Rezk, M. R. Kenawy, Some Hardy’s inequalities on conformable fractional calculus, Demonstr. Math., 57 (2024), 23 pages
-
[4]
G. A. Anastassiou, Fractional differentiation inequalities, Springer, Dordrecht (2009)
-
[5]
E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412
-
[6]
E. Awwad, A. I. Saied, Some weighted dynamic inequalities of Hardy type with kernels on time scales nabla calculus, J. Math. Inequal., 18 (2024), 457–475
-
[7]
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, New Jersey (2012)
-
[8]
B. Benaissa, H. Budak, General (k, p)-Riemann-Liouville fractional integrals, Filomat, 38 (2024), 2579–2586
-
[9]
R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192
-
[10]
K. S. Gehlot, Two Parameter Gamma Function and its Properties, arXiv:1701.01052v1 [math.CA], (2017),
-
[11]
K. S. Gehlot, K. S. Nisar, Extension of two parameter gamma, beta functions and its properties, Appl. Appl. Math., 2020 (2020), 39–55
-
[12]
G. Grüss, Über das Maximum des absoluten Betrages von 1 b−a bR a f (x)g (x) dx− 1 (b−a)2 bR a f (x) dx bR a g (x) dx, Math. Z., 2 (1935), 215–226
-
[13]
R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ (2000)
-
[14]
F. Jarad, T. Abdeljawad, B. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619
-
[15]
U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865
-
[16]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[17]
F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London (2010)
-
[18]
D. S. Mitrinovi´c, J. E. Peˇcari´c, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[19]
P. O. Mohammed, M. Vivas-Cortez, T. Abdeljawad, Y. Rangel-Oliveros, Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications, AIMS Math., 5 (2020), 7316–7331
-
[20]
S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94
-
[21]
D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672–3690
-
[22]
S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J.-B. Liu, On Grüss inequalities within generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 18 pages
-
[23]
H. M. Rezk, W. Albalawi, H. A. Abd El-Hamid, A. I. Saied, O. Bazighifan, M. S. Mohamed, M. Zakarya, Hardy- Leindler-type inequalities via conformable delta fractional calculus, J. Funct. Spaces, 2022 (2022), 10 pages
-
[24]
H. M. Rezk, A. I. Saied, M. Ali, G. AlNemer, M. Zakarya, Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales, Axioms, 13 (2024), 15 pages
-
[25]
A. I. Saied, A study on reversed dynamic inequalities of Hilbert-type on time scales nabla calculus, J. Inequal. Appl., 2024 (2024), 16 pages
-
[26]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon (1993)
-
[27]
M. Z. Sarikaya, C. C. Bili¸sik, T. TunÇ, On Hardy type inequalities via k-fractional integrals, TWMS J. App. Eng. Math., 10 (2020), 443–451
-
[28]
M. Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications, Int. J. Stat. Math., 1 (2014), 033–043
-
[29]
W. T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal., 2 (2011), 23–28
-
[30]
S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, M. I. Ayari, Solvability of a Hilfer Fractional Snap Dynamic System on Unbounded Domains, Fractal Fract., 7 (2023), 24 pages
-
[31]
Ž. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797–814
-
[32]
M. J. Vivas-Cortez, A. Kashuri, R. Liko, J. E. Hernandez, Quantum trapezium-type inequalities using generalized f-convex functions, Axioms, 9 (2020), 14 pages