A note on the generalization of Minkowski's and some other types of integral inequalities via modified AB-fractional operator
Authors
G. Rahman
- Department of Mathematics and Statistics, Hazara University, Bosan Road, Mansehra 21300, Pakistan.
C. Yildiz
- Department of Mathematics, K.K. Education Faculty, Atatürk University, Bosan Road, 25240, Erzurum, Turkey.
M. Samraiz
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
S. S. Aiadi
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia.
N. Mlaiki
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia.
Abstract
Many researchers are attracted to the AB-fractional integral operators for the investigation of a wide range of problems in divers fields. In this paper, we take into consideration the definition of modified AB-fractional integral operators recently proposed by [W. H. Huang, M. Samraiz, A. Mehmood, D. Baleanu, G. Rahman, S. Naheed, Alex. Eng. J., \(\bf 75\) (2023), 639--648]. With the modified AB-fractional integral operators, we propose a generalization of the reverse Minkowski inequality. We also use the modified AB-fractional integral operator to develop some more related integral inequalities. The inequalities in this paper are more general as compared to the existing inequalities. These inequalities extend fractional versions of Minkowski-type inequalities that are both previously known and novel.
Share and Cite
ISRP Style
G. Rahman, C. Yildiz, M. Samraiz, S. S. Aiadi, N. Mlaiki, A note on the generalization of Minkowski's and some other types of integral inequalities via modified AB-fractional operator, Journal of Mathematics and Computer Science, 40 (2026), no. 1, 38--48
AMA Style
Rahman G., Yildiz C., Samraiz M., Aiadi S. S., Mlaiki N., A note on the generalization of Minkowski's and some other types of integral inequalities via modified AB-fractional operator. J Math Comput SCI-JM. (2026); 40(1):38--48
Chicago/Turabian Style
Rahman, G., Yildiz, C., Samraiz, M., Aiadi, S. S., Mlaiki, N.. "A note on the generalization of Minkowski's and some other types of integral inequalities via modified AB-fractional operator." Journal of Mathematics and Computer Science, 40, no. 1 (2026): 38--48
Keywords
- Minkowski inequality
- AB-fractional operator
- modified AB-fractional integral operator
MSC
References
-
[1]
T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 11 pages
-
[2]
T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 10 pages
-
[3]
T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag- Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107
-
[4]
T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 15 pages
-
[5]
P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 10 pages
-
[6]
W. F. S. Ahmed, D. D. Pawar, W. D., Patil, Solution of fractional kinetic equations involving Laguerre polynomials via Sumudu transform, J. Funct. Spaces, 2024 (2024), 10 pages
-
[7]
M. Aldhaifallah, M. Tomar, K. S. Nisar, S. D. Purohit, Some new inequalities for (k, s)-fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374–5381
-
[8]
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769
-
[9]
D. Baleanu, R. P. Agarwal, H. Khan, R. A. Khan, H. Jafari, On the existence of solution for fractional differential equations of order 3 < δ1 ⩽ 4, Adv. Differ. Equ., 2015 (2015), 9 pages
-
[10]
D. Baleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 8 pages
-
[11]
D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462
-
[12]
D. Baleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), 14 pages
-
[13]
D. B˘aleanu, O. G. Mustafa, P. R. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129–1132
-
[14]
D. B˘aleanu, O. G. Mustafa, R. P. Agarwal, On the solution set for a class of sequential fractional differential equations, J. Phys. A, 43 (2010), 7 pages
-
[15]
L. Bougoffa, On Minkowski and Hardy integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), 3 pages
-
[16]
M. Ça˘ glar, K. R. Karthikeyan, G. Murugusundaramoorthy, Inequalities on a class of analytic functions defined by generalized Mittag-Leffler function, Filomat, 37 (2023), 6277–6288
-
[17]
G. Farid, K. A. Khan, N. Latif, A. U. Rehman, S. Mehmood, General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 12 pages
-
[18]
W. H. Huang, M. Samraiz, A. Mehmood, D. Baleanu, G. Rahman, S. Naheed, Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function, Alex. Eng. J., 75 (2023), 639–648
-
[19]
H. Khan, T. Abdeljawad, C. Tunç, A. Alkhazzan, A. Khan, Minkowski’s inequality for the AB-fractional integral operator, J. Inequal. Appl., 2019 (2019), 12 pages
-
[20]
H. Khan, C. Tunç, A. Alkhazan, B. Ameen, A. Khan, A generalization of Minkowski’s inequality by Hahn integral operator, J. Taibah Univ. Sci., 12 (2018), 506–513
-
[21]
K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285
-
[22]
P. A. Naik, M. Yavuz, S. Qureshi, M. D. Naik, K. M. Owolabi, A. Soomro, A. H. Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, Comput. Methods Programs Biomed., 254 (2024),
-
[23]
A. Nazir, G. Rahman, A. Ali, S. Naheed, K. S. Nisar, W. Albalawi, H. Y. Zahran, On generalized fractional integral with multivariate Mittag-Leffler function and its applications, Alex. Eng. J., 61 (2022), 9187–9201
-
[24]
M. J. Park, O. M. Kwon, J. H. Ryu, Generalized integral inequality: application to time-delay systems, Appl. Math. Lett., 77 (2018), 6–12
-
[25]
G. Rahman, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and their Applications, Mathematics, 8 (2020), 19 pages
-
[26]
G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable k-fractional integral operators, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114 (2020),
-
[27]
G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583
-
[28]
G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 9 pages
-
[29]
M. Samraiz, A. Mehmood, S. Naheed, G. Rahman, A. Kashuri, K. Nonlaopon, On Novel Fractional Operators Involving the Multivariate Mittag-Leffler Function, Mathematics, 10 (2022), 19 pages
-
[30]
M. Samraiz, Z. Perveen, T. Abdeljawad, S. Iqbal, S. Naheed, On Certain Fractional Calculus Operators and Their Applications in Mathematical Physics, Phys. Scr., 95 (2020),
-
[31]
M. Samraiz, Z. Perveen, G. Rahman, K. S. Nisar, D. Kumar, On (k, s)-Hilfer Prabhakar Fractional Derivative with Applications in Mathematical Physics, Front. Phys., 8 (2020), 1–9
-
[32]
M. Samraiz, M. Umer, T. Abdeljawad, S. Naheed, G. Rahman, K. Shah, On Riemann-type weighted fractional operators and solutions to Cauchy problems, Comput. Model. Eng. Sci., 136 (2023), 901–919
-
[33]
M. Z. Sarikaya, T. Tunc, H. Budak, On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput., 276 (2016), 316–323
-
[34]
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 10 pages
-
[35]
Y. Shuang, F. Qi, Integral inequalities of Hermite-Hadamard type for extended s-convex functions and applications, Mathematics, 6 (2018), 12 pages
-
[36]
A. Tassaddiq, R. Srivastava, R. Alharbi, R. M. Kasmani, S. Qureshi, An application of multiple Erdélyi–Kober fractional integral operators to establish new inequalities involving a general class of functions, Fractal Fract., 8 (2024), 15 pages