Certain geometric properties of two variable generalized Bessel functions
Authors
S. A. H. Shah
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
Hafsa
- Department of Mathematics, University of Sargodha, Sargodha, Pakistan.
F. A. Awwad
- Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh 11587, Saudi Arabia.
E. A. A. Ismail
- Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh 11587, Saudi Arabia.
T. Gul
- Cambridge Graphene Center, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK.
- Department of Mathematics, City University of Science and Information Technology Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
Abstract
In this paper, we will define the normalized form of the generalized Bessel functions in \(k\) and \(s,k\) form. Sufficient conditions will be given under this study for starlikeness and convexity of normalized forms of \(k\)-Bessel function and \(s,k\)-Bessel function. Geometrical interpretation of Generalized Bessel \(k\) and \(s,k\) function for different values of \(k\) and \(s\) will also be discussed. For better understanding of the reader, some examples will be provided regarding to our approach. The graphical behaviour of these normalized functions and a comparison of graphs with classical form will also be studied to show the accuracy of results.
Share and Cite
ISRP Style
S. A. H. Shah, Hafsa, F. A. Awwad, E. A. A. Ismail, T. Gul, Certain geometric properties of two variable generalized Bessel functions, Journal of Mathematics and Computer Science, 40 (2026), no. 1, 49--72
AMA Style
Shah S. A. H., Hafsa, Awwad F. A., Ismail E. A. A., Gul T., Certain geometric properties of two variable generalized Bessel functions. J Math Comput SCI-JM. (2026); 40(1):49--72
Chicago/Turabian Style
Shah, S. A. H., Hafsa,, Awwad, F. A., Ismail, E. A. A., Gul, T.. "Certain geometric properties of two variable generalized Bessel functions." Journal of Mathematics and Computer Science, 40, no. 1 (2026): 49--72
Keywords
- Analytic
- univalent
- starlikeness
- convexity
- Pochhammer
- Gamma function
- generalized Bessel function
MSC
References
-
[1]
R. S. Ali, S. Mubeen, K. S. Nisar, S. Araci, G. Rahman, Some properties of generalized (s, k)-Bessel function in two variables, J. Math. Comput. Sci., 24 (2020), 10–21
-
[2]
F. M. Arscott, The land beyond Bessel: A survey of higher special functions, In: Ordinary and partial differential equations (Proc. Sixth Conf., Univ. Dundee, Dundee, 1980), Springer, Berlin, 846 (1981), 26–45
-
[3]
M. A. Boston, Birkhäuser, National Institute of Standards, Digital Library of Mathematical Functions, (1988)
-
[4]
T. Bulboac˘a, H. M. Zayed, Analytical and geometrical approach to the generalized Bessel function, J. Inequal. Appl., 2024 (2024), 17 pages
-
[5]
C. Cesarano, D. Assante, A note on Generalized Bessel Functions, Int. J. Math. Models Methods Appl. Sci., 7 (2013), 625–629
-
[6]
O. P. Dave, Special Functions in Mathematics, Int. J. Adv. Res. Electr., Electron. Instrum. Eng., 5 (2016), 7651–7655
-
[7]
R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192
-
[8]
B. A. Frasin, I. Aldawish, On subclasses of uniformly spiral-like functions associated with generalized Bessel functions, J. Funct. Spaces, 2019 (2019), 6 pages
-
[9]
D. Girela, Basic theory of univalent functions, In: Conference Paper, Complex Anal. Rel. Areas, (2013)
-
[10]
F. A. Idris, A. L. Buhari, T. U. Adamu, Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions, Int. J. Novel Res. Phys. Chem. Math., 3 (2016), 17–31
-
[11]
V. Kiryakova, A guide to special functions in fractional calculus, Mathematics, 9 (2021), 40 pages
-
[12]
B. S. Koranga, S. K. Padaliya, V. K. Nautiyal, Special Functions and Their Application, River Publishers, New York (2022)
-
[13]
N. N. Lebedev, Special functions and their applications, Dover Publications, New York (1972)
-
[14]
D. Liu, M. U. Din, M. Raza, S. N. Malik, H. Tang, Convexity, Starlikeness, and Prestarlikeness of Wright Functions, Mathematics, 10 (2022), 15 pages
-
[15]
Y. L. Luke, The special functions and their approximations, Vol. I, Academic Press, New York-London (1969)
-
[16]
Y. L. Luke, The special functions and their approximations. Vol. II, Academic Press, New York-London (1969)
-
[17]
W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, New York (1966)
-
[18]
F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London (2010)
-
[19]
S. Mubeen, R. S. Ali, I. Nayab, G. Rahman, T. Abdeljawad, K. S. Nisar, Integral transforms of an extended generalized multi-index Bessel function, AIMS Math., 5 (2020), 7531–7546
-
[20]
S. Mubeen, S. Shah, G. Rahman, K. Nisar, T. Abdeljawad, Some Generalized Special Functions and their Properties, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 45–65
-
[21]
T. Nahid, M. Ali, Several characterizations of Bessel functions and their applications, Georgian Math. J., 29 (2022), 83–93
-
[22]
F. J. Narcowich, Notes on Special Functions, Texas A&M University, (2005)
-
[23]
J. Niedziela, Bessel Functions and Their Applications, University of Tennessee-Knoxville, (2008)
-
[24]
A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics, Birkhäuser Verlag, Basel (1988)
-
[25]
K. Parand, M. Nikarya, Application of Bessel functions for solving differential and integro-differential equations of the fractional order, Appl. Math. Model., 38 (2014), 4137–4147
-
[26]
A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, Gordon and Breach Science Publishers, Australia (1992)
-
[27]
R. Roy, Sources in the Development of Mathematics, Cambridge University Press, New York (2011)
-
[28]
M. K. Sajid, R. S. Ali, I. Nayab, Some results of generalized k-fractional integral operator with k-Bessel function, Turk. J. Sci., 5 (2020), 157–169
-
[29]
H. M. Srivastava, An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials, Symmetry, 15 (2023), 28 pages
-
[30]
D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh, Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus, AIMS Math., 5 (2020), 1400–1410
-
[31]
N. M. Temme, Special functions: An introduction to the classical functions of mathematical physics, John Wiley & Sons, New York (2011)
-
[32]
D. K. Thomas, N. Tuneski, A. Vasudevarao, Univalent functions, De Gruyter, Berlin (2018)
-
[33]
G. N. Watson, A treatise on the theory of Bessel functions, The University Press, Cambridge (1922)
-
[34]
N. Yagmur, H. Orhan, Starlikeness and convexity of generalized Struve functions, Abstr. Appl. Anal., 2013 (2013), 6 pages
-
[35]
H. M. Zayed, T. Bulboac˘a, Normalized generalized Bessel function and its geometric properties, J. Inequal. Appl., 2022 (2022), 26 pages