Some novel estimates of Hermite-Hadamard type inequality for post-quantum integrals involving coordinated convex functions and application
Authors
T. Nawaz
- Department of Mathematical Sciences, UET, 47080, Taxila, Pakistan.
M. Vivas-Cortez
- FRACTAL (Fractional Research Analysis Convexity and Their Applications Laboratory), Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Ecuador.
A. Kashuri
- Department of Mathematical Engineering, Polytechnic University of Tirana, 1001 Tirana, Albania.
M. Raees
- Govt. Graduate College Satellite town, 44000, Rawalpindi, Pakistan.
A. Shahzad
- Department of Mathematical Sciences, UET, 47080, Taxila, Pakistan.
Abstract
This study reveals the error analysis of Hermite-Hadamard inequality for coordinated convexity related to post-quantum integrals. At first, we establish a multi-parameter identity pertaining coordinated convexity via post-quantum integrals followed by new integrals to construct our main results. By utilizing this generic identity, we analyze the error estimates of classical Hermite-Hadamard inequality in the post-quantum context. Application of power mean inequality enables the refinement of bounds involved and extends it further. We make use of graphical representation with the help of concrete examples to verify the validity of presented results. In the end, to focus on usability and significance of the results, two applications through polynomial functions are produced.
Share and Cite
ISRP Style
T. Nawaz, M. Vivas-Cortez, A. Kashuri, M. Raees, A. Shahzad, Some novel estimates of Hermite-Hadamard type inequality for post-quantum integrals involving coordinated convex functions and application, Journal of Mathematics and Computer Science, 40 (2026), no. 1, 101--123
AMA Style
Nawaz T., Vivas-Cortez M., Kashuri A., Raees M., Shahzad A., Some novel estimates of Hermite-Hadamard type inequality for post-quantum integrals involving coordinated convex functions and application. J Math Comput SCI-JM. (2026); 40(1):101--123
Chicago/Turabian Style
Nawaz, T., Vivas-Cortez, M., Kashuri, A., Raees, M., Shahzad, A.. "Some novel estimates of Hermite-Hadamard type inequality for post-quantum integrals involving coordinated convex functions and application." Journal of Mathematics and Computer Science, 40, no. 1 (2026): 101--123
Keywords
- Hermite-Hadamard inequality
- coordinated convex functions
- Jackson integrals
- power-mean inequality
- post-quantum double integrals
- twice partially post-quantum derivatives
- special means
MSC
- 26D07
- 26D10
- 26D15
- 26B25
- 26A33
References
-
[1]
H. M. Annyby, Z. S. Mansour, q-fractional calculus and equations, Springer, Heidelberg (2012)
-
[2]
A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York (2013)
-
[3]
M. Bohner, G. S. Guseinov, The h-Laplace and q-Laplace transforms, J. Comput. Appl. Math., 365 (2010), 75–92
-
[4]
H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910
-
[5]
J. D. Bukweli-Kyemba, M. N. Hounkonnou, Quantum deformed algebra: Coherent states and special functions, arXiv:1301.0116, (2013), 114 pages
-
[6]
R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A, 24 (1991), L711–L718
-
[7]
W.-T. Cheng, W.-H. Zhang, Q.-B. Cai, (p, q)-gamma operators which preserve x2, J. Inequal. Appl., 108 (2019), 14 pages
-
[8]
A. Dobrogowska, A. Odzijewicz, Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346
-
[9]
S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788
-
[10]
M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc., 138 (2010), 1733–1738
-
[11]
T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser/Springer Basel AG, Basel (2012)
-
[12]
R. A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., 2010 (2010), 10 pages
-
[13]
H. Gauchman, Integral inequalities in q-calculus, Comput. Appl. Math., 47 (2004), 281–300
-
[14]
J. Hadamard, Etude sur les fonctions entiees et en particulier d’une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171–215
-
[15]
C. Hermite, Sur deux limites d’ une integrale de finie, Mathesis, 3 (1883), 1–82
-
[16]
M. E. H. Ismail, P. Simeonov, q-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749–761
-
[17]
F. H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (1909), 253–281
-
[18]
F. H. Jackson, On a q-definite integrals, Quart. J. Pure. Appl. Math., 41 (1910), 193–203
-
[19]
S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On q-Hermite–Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 9 pages
-
[20]
V. Kac, P. Cheung, Quantum calculus, Springer-Verlag, New York (2002)
-
[21]
H. Kalsoom, M. A. Amer, M-D. Junjua, S. Hussain, G. Shahzadi, Some (p, q)-estimation of Hermite–Hadamard-type inequalities for coordinated convex and quasi-convex functions, Mathematics, 7 (2019), 22 pages
-
[22]
H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, Y.-M. Chu, Post quantum inequalities of Hermite– Hadamard type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 20 pages
-
[23]
H. Kalsoom, J. D. Wu, S. Hussain, M. A. Latif, Simpson’s type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 16 pages
-
[24]
M. Kunt, M. A. Latif, Í. ͸scan, S. S. Dragomir, Quantum Hermite–Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals, Sigma J. Eng. Nat. Sci., 37 (2019), 207–223
-
[25]
M. A. Latif, S. S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl., 2012 (2012), 13 pages
-
[26]
M. A. Latif, S. S. Dragomir, E. Momoniat, Some q-analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ. Sci., 29 (2017), 263–273
-
[27]
T. Li., D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), 19 pages
-
[28]
G. V. Milovanovi´c, V. Gupta, N. Malik, (p, q)-Beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237
-
[29]
M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679
-
[30]
J. Prabseang, K. Nonlaopon, J. Tariboon, Quantum Hermite-Hadamard inequalities for double integral and qdifferentiable convex functions, J. Math. Inequal., 13 (2019), 675–686
-
[31]
M. Raees, M. Anwar, New estimation of error in the Hadamard inequality pertaining to coordinated convex functions in quantum calculus, Symmetry, 15 (2023), 28 pages
-
[32]
P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018), 21–39
-
[33]
D. F. Sofonea, Some new properties in q-calculus, Gen. Math., 16 (2008), 47–54
-
[34]
H. M. Srivastava, J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier, Amsterdam (2012)
-
[35]
W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793
-
[36]
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013 (2013), 19 pages
-
[37]
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 13 pages
-
[38]
M. Tunç, E. Göv, (p, q)-integral inequalities, RGMIA Res. Rep. Coll.,, 19 (2016), 1–13
-
[39]
M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, Filomat, 35 (2021), 1421–1430
-
[40]
F. Wannalookkhee, K. Nonlaopon, S. K. Ntouyas, M. Z. Sarikaya, H. Budak, Some new post-quantum Simpson’s type inequalities for coordinated convex functions, Mathematics, 10 (2022), 26 pages
-
[41]
W. Yang, Some new Fejér type inequalities via quantum calculus on finite intervals, Sci. Asia, 43 (2017), 123–134