Euler polynomials coefficient estimates for bi-univalent functions defined by subordinations
Authors
A. Amourah
- Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar 311, Oman.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
L.-I. Cotîrla
- Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
D. Breaz
- Department of Mathematics, “1 Decembrie 1918” University of Alba Iulia, RC-510009 Alba Iulia, Romania.
Sh. M. El-Deeb
- Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia.
- Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
M. Al-hodieb
- Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia.
M. Cojocnean
- Department of Mathematics, Faculty of Mathematics and Computer Science, Babes Bolyai University, Cluj Napoca, Romania.
Abstract
Our research endeavors focus on the introduction of novel subclasses of analytic functions, which are defined in terms of Euler polynomials. The primary objective of our investigation is to estimate the Fekete-Szego functional problem and determine the Maclaurin coefficients, specifically \(\left\vert c_{2}\right\vert \) and \(\left\vert c_{3}\right\vert \), for this particular subfamily. Furthermore, we will present a number of innovative findings that arise when we specialize the parameters employed in our core discoveries.
Share and Cite
ISRP Style
A. Amourah, L.-I. Cotîrla, D. Breaz, Sh. M. El-Deeb, M. Al-hodieb, M. Cojocnean, Euler polynomials coefficient estimates for bi-univalent functions defined by subordinations, Journal of Mathematics and Computer Science, 40 (2026), no. 1, 124--134
AMA Style
Amourah A., Cotîrla L.-I., Breaz D., El-Deeb Sh. M., Al-hodieb M., Cojocnean M., Euler polynomials coefficient estimates for bi-univalent functions defined by subordinations. J Math Comput SCI-JM. (2026); 40(1):124--134
Chicago/Turabian Style
Amourah, A., Cotîrla, L.-I., Breaz, D., El-Deeb, Sh. M., Al-hodieb, M., Cojocnean, M.. "Euler polynomials coefficient estimates for bi-univalent functions defined by subordinations." Journal of Mathematics and Computer Science, 40, no. 1 (2026): 124--134
Keywords
- Analytic functions
- Euler polynomials
- convolution
- bi-univalent functions
- Fekete-Szego problem
MSC
References
-
[1]
T. Al-Hawary, A. Amourah, A. Alsoboh, O. Alsalhi, A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials, Symmetry, 15 (2023), 1–11
-
[2]
O. Alnajar, A. Amourah, J. Salah, M. Darus, Fekete–Szegö Functional Problem for Analytic and Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, Contemp. Math., 5 (2024), 5731–5742
-
[3]
A. Alsoboh, A. Amourah, J. Salah, Bi-univalent functions using Bell distribution associated with Meixner-Pollaczek polynomials, Int. J. Math. Comput. Sci., 19 (2024), 1077–1092
-
[4]
A. Amourah, T. Al-Hawary, B. A. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazileviˇc functions of order α + iβ, Afr. Mat., 32 (2021), 1059–1066
-
[5]
A. Amourah, M. Alomari, F. Yousef, A. Alsoboh, Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials, Math. Probl. Eng., 2022 (2022), 6 pages
-
[6]
A. Amourah, A. Alsoboh, D. Breaz, S. M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q-Calculus, Mathematics, 12 (2024), 13 pages
-
[7]
A. Amourah, N. Anakira, M. J. Mohammed, M. Jasim, Jacobi polynomials and bi-univalent functions, Int. J. Math. Comput. Sci., 19 (2024), 957–968
-
[8]
A. Amourah, B. A. Frasin, M. Ahmad, F. Yousef, Exploiting the pascal distribution series and gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry, 14 (2022), 8 pages
-
[9]
A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, T. Al-Hawary, Bi-Bazileviˇc functions of order ϑ+iδ associated with (p, q)-Lucas polynomials, AIMS Math., 6 (2021), 4296–4305
-
[10]
N. Anakira, M. J. Mohammed, I. Irianto, A. Amourah, O. N. Oqilat, Exact solution of system of multi-photograph type delay differential equations via new algorithm based on homotopy perturbation method, Results Nonlinear Anal., 7 (2024), 187–197
-
[11]
S. Bulut, N. Magesh, C. Abirami, A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials, J. Fract. Calc. Appl., 8 (2017), 32–39
-
[12]
J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (2003), 7–18
-
[13]
M. Fekete, G. Szegö, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc., 8 (1933), 85–89
-
[14]
A. Hussen, An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions, Heliyon, 10 (2024), 8 pages
-
[15]
A. Hussen, M. Illafe, Coefficient bounds for a certain subclass of bi-univalent functions associated with Lucas-balancing polynomials, Mathematics, 11 (2023), 8 pages
-
[16]
M. Illafe, F. Yousef, M. Haji Mohd, S. Supramaniam, Initial coefficients estimates and Fekete?Szego inequality problem for a general subclass of bi-univalent functions defined by subordination, Axioms, 12 (2023), 10 pages
-
[17]
V. Kac, P. Cheung, Quantum calculus, Springer-Verlag, New York (2002)
-
[18]
S. S. Miller, P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305
-
[19]
S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172
-
[20]
S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker, New York (2000)
-
[21]
G. Murugusundaramoorthy, N. Magesh, V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., 2013 (2013), 3 pages
-
[22]
Z. Peng, G. Murugusundaramoorthy, T. Janani, Coefficient estimate of biunivalent functions of complex order associated with the Hohlov operator, J. Complex Anal., 2014 (2014), 6 pages
-
[23]
C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen (1975)
-
[24]
H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc., 129 (2000), 77–84
-
[25]
H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey), TWMS J. Pure Appl. Math., 7 (2016), 123–145
-
[26]
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192
-
[27]
F. Yousef, T. Al-Hawary, G. Murugusundaramoorthy, Fekete-Szegö functional problems for some subclasses of biunivalent functions defined by Frasin differential operator, Afr. Mat., 30 (2019), 495–503
-
[28]
F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys., 11 (2021), 12 pages