A methodology of hybrid fixed point theorems for solving Fredholm-Volterra integral equations
Volume 41, Issue 3, pp 334--346
https://dx.doi.org/10.22436/jmcs.041.03.04
Publication Date: November 12, 2025
Submission Date: April 02, 2025
Revision Date: August 17, 2025
Accteptance Date: September 05, 2025
Authors
M. S. Shagari
- Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria.
P. Oloche
- Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria.
M. Noorwali
- Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia.
I. Ayoob
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
N. Mlaiki
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
Abstract
This paper studies a new notion of Jaggi-type hybrid (\(\theta\)-\(\phi\))-contraction and demonstrates its roles in proving fixed point theorems within the context of a generalized metric space. We prove, using comparative examples that under special instances, the ideas presented herein can be reduced to some known results in the existing literature. To show a possible application of our main contractive inequality, iterative methods are developed for addressing the existence of solutions to a class of mixed nonlinear fixed point problems involving Volterra-Fredholm integral equation.
Share and Cite
ISRP Style
M. S. Shagari, P. Oloche, M. Noorwali, I. Ayoob, N. Mlaiki, A methodology of hybrid fixed point theorems for solving Fredholm-Volterra integral equations, Journal of Mathematics and Computer Science, 41 (2026), no. 3, 334--346
AMA Style
Shagari M. S., Oloche P., Noorwali M., Ayoob I., Mlaiki N., A methodology of hybrid fixed point theorems for solving Fredholm-Volterra integral equations. J Math Comput SCI-JM. (2026); 41(3):334--346
Chicago/Turabian Style
Shagari, M. S., Oloche, P., Noorwali, M., Ayoob, I., Mlaiki, N.. "A methodology of hybrid fixed point theorems for solving Fredholm-Volterra integral equations." Journal of Mathematics and Computer Science, 41, no. 3 (2026): 334--346
Keywords
- Fixed point
- metric space
- \(\theta\)-contraction
- nonlinear integral equation
- Volterra-Fredholm integral
MSC
References
-
[1]
T. Abdeljawad, R. P. Agarwal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 18 pages
-
[2]
Z. T. Ahmad, M. S. Shagari, T. Alotaibi, G. A. Basendwah, A. Saliu, A. A. Tijjani, C∗-algebra-valued perturbed metric spaces and fixed point results, Res. Math., 12 (2025), 8 pages
-
[3]
Z. T. Ahmad, M. S. Shagari, M. Noorwali, A. A. Tijjani, A. Saliu, RLC-electric circuits and fixed point theorems in C∗-algebra-valued modular metric-like space, J. Inequal. Appl., 2025 (2025), 18 pages
-
[4]
M. A. Alghamdi, E. Karapınar, G-β-ψ-contractive type mappings in G-metric spaces, Fixed Point Theory Appl., 2013 (2013), 17 pages
-
[5]
H. Aydi, E. Karapinar, H. Lakzian, Fixed point results on a class of generalized metric spaces, Math. Sci. (Springer), 6 (2012), 6 pages
-
[6]
H. Aydi, E. Karapınar, B. Samet, Fixed points for generalized (α,ψ)-contractions on generalized metric spaces, J. Inequal. Appl., 2014 (2014), 16 pages
-
[7]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181
-
[8]
V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare (2002)
-
[9]
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37
-
[10]
M. Boriceanu, M. Bota, A. Petru¸sel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 80 (2010), 367–377
-
[11]
M. Cherichi, B. Samet, Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations, Fixed Point Theory Appl., 2012 (2012), 19 pages
-
[12]
H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 18 pages
-
[13]
H. A. Hammad, M. De la Sen, Fixed-point results for a generalized almost (s, q)-Jaggi F-Contraction-type on b-metric-like spaces, Mathematics, 8 (2020), 21 pages
-
[14]
H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 14 pages
-
[15]
D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8 (1977), 223–230
-
[16]
J. A. Jiddah, M. S. Shagari, M. Noorwali, A. Aloqaily, N. Mlaiki, Hybrid fixed point theorems of graphic contractions with applications, Heliyon, 10 (2024), 13 pages
-
[17]
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8 pages
-
[18]
E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87
-
[19]
E. Karapinar, A. Fulga, A Hybrid contraction that involves Jaggi type, Symmetry, 11 (2019), 9 pages
-
[20]
W. A. Kirk, N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl., 2013 (2013), 9 pages
-
[21]
Z. D. Mitrovic, H. Aydi, M. S. M. Noorani, H. Qawaqneh, The weight inequalities on Reich type theorem in b-metric spaces, J. Math. Comput. Sci., 19 (2019), 51–57
-
[22]
N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 12 pages
-
[23]
I. R. Sarma, J. M. Rao, S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 180–182
-
[24]
B. Samet, Discussion on “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari [MR1771669], Publ. Math. Debrecen, 76 (2010), 493–494
-
[25]
M. S. Shagari, M. Mustapha, H. H. Taha, S. Aljohani, N. Mlaiki, On Combinational Contractions with Applications, Heliyon, 11 (2025), 15 pages
-
[26]
W. Shatanawi, A. Al-Rawashdeh, H. Aydi, H. K. Nashine, On a fixed point for generalized contractions in generalized metric spaces, Abstr. Appl. Anal., 2012 (2012), 13 pages
-
[27]
T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal., 64 (2006), 971–978
-
[28]
C. Vetro, On Branciari’s theorem for weakly compatible mappings, Appl. Math. Lett., 23 (2010), 700–705
-
[29]
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages
-
[30]
S. S. Ye¸silkaya, On interpolative Hardy-Rogers contractive of Suzuki type mappings, Topol. Algebra Appl., 9 (2021), 13–19