On solving split variational inclusion problems with multi-inertial extrapolation and applications
Authors
S. Kesornprom
- Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand.
P. Inkrong
- School of Science, University of Phayao, Phayao 56000, Thailand.
P. Paimsang
- School of Science, University of Phayao, Phayao 56000, Thailand.
N. Pholasa
- School of Science, University of Phayao, Phayao 56000, Thailand.
P. Cholamjiak
- School of Science, University of Phayao, Phayao 56000, Thailand.
Abstract
In this study, we address split variational inclusion problems in Hilbert spaces and introduce a new algorithm that combines multi-inertial extrapolation with a self-adaptive stepsize technique. The method is designed to enhance convergence performance while relaxing typical parameter constraints. Under suitable assumptions, we establish a weak convergence theorem. To validate the effectiveness of the approach, we apply it to real-world problems in image restoration and medical data classification.
\begin{keyword}Split variational inclusion problems \sep multi-inertial extrapolation \sep weak convergence \sep image restoration \sep data classification.
\MSC{47H09 \sep 47H10 \sep 47J05 \sep 47J25 \sep 49J40 \sep 35A15
Share and Cite
ISRP Style
S. Kesornprom, P. Inkrong, P. Paimsang, N. Pholasa, P. Cholamjiak, On solving split variational inclusion problems with multi-inertial extrapolation and applications, Journal of Mathematics and Computer Science, 41 (2026), no. 3, 347--364
AMA Style
Kesornprom S., Inkrong P., Paimsang P., Pholasa N., Cholamjiak P., On solving split variational inclusion problems with multi-inertial extrapolation and applications. J Math Comput SCI-JM. (2026); 41(3):347--364
Chicago/Turabian Style
Kesornprom, S., Inkrong, P., Paimsang, P., Pholasa, N., Cholamjiak, P.. "On solving split variational inclusion problems with multi-inertial extrapolation and applications." Journal of Mathematics and Computer Science, 41, no. 3 (2026): 347--364
Keywords
- Split variational inclusion problems
- multi-inertial extrapolation
- weak convergence
- image restoration
- data classification
MSC
- 47H09
- 47H10
- 47J05
- 47J25
- 49J40
- 35A15
References
-
[1]
R. P. Agarwal, D. O’Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Springer, New York (2009)
-
[2]
F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773–782
-
[3]
F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11
-
[4]
H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York (2011)
-
[5]
R. I. Bo¸t, E. R. Csetnek, An inertial alternating direction method of multipliers, Minimax Theory Appl., 1 (2016), 29–49
-
[6]
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441–453
-
[7]
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120
-
[8]
C. Byrne, Y. Censor, A. Gibali, S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759–775
-
[9]
A. Cegielski, General method for solving the split common fixed point problem, J. Optim. Theory Appl., 165 (2015), 385–404
-
[10]
Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006),
-
[11]
Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301–323
-
[12]
Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587–600
-
[13]
C. Chen, R. H. Chan, S. Ma, J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8 (2015), 2239–2267
-
[14]
C.-S. Chuang, Strong convergence theorems for the split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl., 2013 (2013), 20 pages
-
[15]
C.-S. Chuang, Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications, Optimization, 66 (2017), 777–792
-
[16]
P. L. Combettes, L. E. Glaudin, Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s mean value algorithm to inertial methods, SIAM J. Optim., 27 (2017), 2356–2380
-
[17]
Y. Dang, Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Probl., 27 (2010), 9 pages
-
[18]
Q. L. Dong, J. Z. Huang, X. H. Li, Y. J. Cho, T. M. Rassias, MiKM: multi-step inertial Krasnosel’skiˇı–Mann algorithm and its applications, J. Global Optim., 73 (2019), 801–824
-
[19]
K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge (1990)
-
[20]
K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York (1984)
-
[21]
Guslovesmath, Lung Cancer ML Classification (Kaggle Notebook), https://www.kaggle.com/code/guslovesmath/lungcancer- ml-classification/input, ((Accessed 12 June 2025))
-
[22]
A. Hadjian, S. Heidarkhani, Existence of one non-trivial anti-periodic solution for second-order impulsive differential inclusions, Math. Methods Appl. Sci., 40 (2017), 5009–5017
-
[23]
S. Heidarkhani, G. A. Afrouzi, A. Hadjian, J. Henderson, Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions, Electron. J. Differ. Equ., 2013 (2013), 13 pages
-
[24]
P. Inkrong, P. Cholamjiak, Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion, Math. Methods Appl. Sci., 47 (2024), 12132–12148
-
[25]
P. Inkrong, P. Cholamjiak, On multi-inertial extrapolations and forward-backward-forward algorithms, Carpathian J. Math., 40 (2024), 293–305
-
[26]
P. Inkrong, P. Paimsang, P. Cholamjiak, A recent fixed point method based on two inertial terms, J. Anal., 33 (2025), 521–535
-
[27]
O. S. Iyiola, Y. Shehu, Convergence results of two-step inertial proximal point algorithm, Appl. Numer. Math., 182 (2022), 57–75
-
[28]
K. Kankam, W. Cholamjiak, P. Cholamjiak, J.-C. Yao, Enhanced proximal gradient methods with multi inertial terms for minimization problem, J. Appl. Math. Comput., (2025), 1–39
-
[29]
X. Li, Q.-L. Dong, A. Gibali, PMiCA-Parallel multi-step inertial contracting algorithm for solving common variational inclusions, J. Nonlinear Funct. Anal., 2022 (2022), 12 pages
-
[30]
J. Liang, Convergence rates of first-order operator splitting methods, Doctoral Dissertation, Normandie Université; GREYC CNRS UMR 6072, (2016)
-
[31]
G. Marino, H.-K. Xu, Convergence of generalized proximal point algorithms, Commun. Pure Appl. Anal., 3 (2004), 791–808
-
[32]
A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283
-
[33]
T. L. N. Nguyen, Y. Shin, Deterministic sensing matrices in compressive sensing: A survey, Sci. World J., 2013 (2013), 6 pages
-
[34]
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597
-
[35]
Orvile, Knee X-ray Osteoporosis Database [Data set], Kaggle, (2022)
-
[36]
M. O. Osilike, S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model., 32 (2000), 1181–1191
-
[37]
N. Pakkaranang, P. Kumam, Y. I. Suleiman, B. Ali, Bounded perturbation resilience of viscosity proximal algorithm for solving split variational inclusion problems with applications to compressed sensing and image recovery, Math. Methods Appl. Sci., 45 (2022), 4085–4107
-
[38]
B. T. Polyak, Some methods of speeding up the convergence of iterates methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17
-
[39]
B. T. Polyak, Introduction to Optimization, Optimization Software, Publications Division, New York (1987)
-
[40]
C. Poon, J. Liang, Trajectory of alternating direction method of multipliers and adaptive acceleration, Adv. Neural Inf. Process. Syst., 32 (2019),
-
[41]
S. Reich, Extension problems for accretive sets in Banach spaces, J. Funct. Anal., 26 (1977), 378–395
-
[42]
S. Reich, T. M. Tuyen, Cyclic projection methods for solving the split common zero point problem in Banach spaces, Fixed Point Theory, 25 (2024), 353–370
-
[43]
S. Reich, T. M. Tuyen, Two new selfadaptive algorithms for solving the split feasibility problem in Hilbert space, Numer. Algorithms, 95 (2024), 1011–1032
-
[44]
S. Reich, T. M. Tuyen, Three shrinking projection methods with multiple inertial effects for solving a class of split feasibility problems, J. Fixed Point Theory Appl., 26 (2024), 19 pages
-
[45]
Y. Shehu, Q.-L. Dong, L.-L. Liu, Global and linear convergence of alternated inertial methods for split feasibility problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2021), 26 pages
-
[46]
L. Shulman, Knowledge and teaching: Foundations of the new reform, Harv. Educ. Rev., 57 (1987), 1–23
-
[47]
D. V. Thong, S. Reich, X.-H. Li, P. T. H. Tham, An efficient algorithm with double inertial steps for solving split common fixed point problems and an application to signal processing, Comput. Appl. Math., 44 (2025), 17 pages
-
[48]
K.-H. Thung, P. Raveendran, A survey of image quality measures, In: 2009 International Conference for Technical Postgraduates (TECHPOS), IEEE, (2009), 1–4
-
[49]
N. Wairojjana, N. Pholasa, N. Pakkaranang, On strong convergence theorems for a viscosity-type Tseng’s extragradient methods solving quasimonotone variational inequalities, Nonlinear Funct. Anal. Appl., 27 (2022), 381–403
-
[50]
Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612
-
[51]
H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), 17 pages
-
[52]
C. Zhang, Q.-L. Dong, J. Chen, Multi-step inertial proximal contraction algorithms for monotone variational inclusion problems, Carpathian J. Math., 36 (2020), 159–177
-
[53]
C. Zong, G. Zhang, Y. Tang, Multi-step inertial forward-backward-half forward algorithm for solving monotone inclusion, Linear Multilinear Algebra, 71 (2023), 631–661