Stabilization of fractional hybrid systems with applications in biomedical dynamics
Authors
I. Alraddadi
- Department of Mathematics, Faculty of Science, Islamic University of Madinah, Saudi Arabia.
M. P. Ineh
- Department of Mathematics and Computer Science, Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria.
D. K. Igobi
- Department of Mathematics, University of Uyo, Uyo, Nigeria.
U. Ishtiaq
- Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore, Pakistan.
I.-L Popa
- Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, Alba Iulia 510009, Romania.
- Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Iuliu Maniu Street 50, Brasov 500091, Romania.
Abstract
This work introduces a novel analytical framework for analyzing the stability of Caputo fractional dynamic equations on time scales (CFDE\(\mathbb{T}\)) using a two-measure approach combined with comparison principle. By applying paired measures \((m_0, m)\) and vector Lyapunov functions, we derive sufficient conditions for both \((m_0, m)\)-stability and asymptotic stability. The method simplifies analysis by relating the system to a well-understood comparison system, reducing the task to verifying quasimonotonicity and avoiding the need for explicit solutions. The framework’s effectiveness is demonstrated through two biological models, an immune response system and a 3D hypothalamic-pituitary-adrenal (HPA) axis, highlighting its ability to handle nonlinearities, hybrid time scales, and varying system dimensions. This study bridges theoretical stability analysis with practical biomedical applications, advancing the understanding of fractional-order hybrid dynamics.
Share and Cite
ISRP Style
I. Alraddadi, M. P. Ineh, D. K. Igobi, U. Ishtiaq, I.-L Popa, Stabilization of fractional hybrid systems with applications in biomedical dynamics, Journal of Mathematics and Computer Science, 41 (2026), no. 3, 406--420
AMA Style
Alraddadi I., Ineh M. P., Igobi D. K., Ishtiaq U., Popa I.-L, Stabilization of fractional hybrid systems with applications in biomedical dynamics. J Math Comput SCI-JM. (2026); 41(3):406--420
Chicago/Turabian Style
Alraddadi, I., Ineh, M. P., Igobi, D. K., Ishtiaq, U., Popa, I.-L. "Stabilization of fractional hybrid systems with applications in biomedical dynamics." Journal of Mathematics and Computer Science, 41, no. 3 (2026): 406--420
Keywords
- Immune response model
- neuro-endocrine regulation model
- two measure stabilization
- fractional calculus
- time scales
- comparison principle
MSC
- 34A08
- 34A38
- 34D20
- 34N05
- 92C50
References
-
[1]
J. O. Achuobi, E. P. Akpan, R. George, A. E. Ofem, STABILITY analysis of Caputo fractional time-dependent systems with delay using vector Lyapunov functions, AIMS Math., 9 (2024), 28079–28099
-
[2]
R. P. Agarwal, S. Hristova, D. O’Regan, Practical stability of Caputo fractional differential equations by Lyapunov functions, Differ. Equ. Appl., 8 (2016), 53–68
-
[3]
A. Ahmadkhanlu, M. Jahanshahi, On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales, Bull. Iranian Math. Soc., 38 (2012), 241–252
-
[4]
J. E. Ante, M. P. Ineh, J. O. Achuobi, U. P. Akai, J. U. Atsu, N. A. O. Offiong, A novel Lyapunov asymptotic eventual stability approach for nonlinear impulsive Caputo fractional differential equations, Appl. Math., 4 (2024), 1600–1617
-
[5]
J. E. Ante, O. O. Itam, J. U. Atsu, S. O. Essang, E. E. Abraham, M. P. Ineh, On the novel auxiliary Lyapunov function and uniform asymptotic practical stability of nonlinear impulsive Caputo fractional differential equations via new modelled generalized Dini derivative, Afr. J. Math. Stat. Stud., 7 (2024), 11–33
-
[6]
M. Bohner, P. Allan, Dynamic equations on time scales: an introduction with applications, Birkhäuser/Springer Basel AG, Boston (2001)
-
[7]
S. E. Ekoro, A. E. Ofem, F. A. Adie, J. Oboyi, G. I. Ogban, M. P. Ineh, On a faster iterative method for solving nonlinear fractional integro-differential equations with impulsive and integral conditions, Palest. J. Math., 12 (2023), 477–484
-
[8]
S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56
-
[9]
D. K. Igobi, M. P. Ineh, Results on existence and uniqueness of solutions of dynamic equations on time scale via generalized ordinary differential, Int. J. Appl. Math., 37 (2024), 1–20
-
[10]
D. K. Igobi, E. Ndiyo, M. P. Ineh, Variational stability results of dynamic equations on time-scales using generalized ordinary differential equations, World J. Appl. Sci. Technol., 15 (2024), 245–254
-
[11]
D. Igobi, W. Udogworen, Results on Existence and Uniqueness of solutions of Fractional Differential Equations of Caputo- Fabrizio type in the sense of Riemann-Liouville, IAENG Int. J. Appl. Math., 54 (2024), 1163–1171
-
[12]
M. P. Ineh, J. O. Achuobi, E. P. Akpan, J. E. Ante, CDq on the uniform stability of Caputo fractional differential equations using vector Lyapunov functions, J. Niger. Assoc. Math. Phys., 68 (2024), 51–64
-
[13]
M. P. Ineh, E. P. Akpan, Lyapunov uniform asymptotic stability of Caputo fractional dynamic equations on time scale using a generalized derivative, Trans. Niger. Assoc. Math. Phys., 20 (2024), 117–132
-
[14]
M. P. Ineh, E. P. Akpan, On Lyapunov stability of Caputo fractional dynamic equations on time scale using vector Lyapunov functions, Khayyam J. Math., 11 (2025), 116–143
-
[15]
M. P. Ineh, E. P. Akpan, U. D. Akpan, A. Maharaj, O. K. Narain, On Total Stability Analysis of Caputo Fractional Dynamic Equations on Time Scale, Asia Pac. J. Math., 12 (2025), 1–14
-
[16]
M. P. Ineh, E. P. Akpan, H. A. Nabwey, A novel approach to Lyapunov stability of Caputo fractional dynamic equations on time scale using a new generalized derivative, AIMS Math., 9 (2024), 34406–34434
-
[17]
M. P. Ineh, U. Ishtiaq, J. E. Ante, M. Garayev, I.-L. Popa, A robust uniform practical stability approach for Caputo fractional hybrid systems, AIMS Math., 10 (2025), 7001–7021
-
[18]
M. P. Ineh, V. N. Nfor, M. I. Sampson, J. E. Ante, J. U. Atsu, O. O. Itam, A novel approach for vector Lyapunov functions and practical stability of Caputo fractional dynamic equations on time scale in terms of two measures, Khayyam J. Math., 11 (2025), 61–89
-
[19]
M. E. Koksal, Stability analysis of fractional differential equations with unknown parameters, Nonlinear Anal. Model. Control, 24 (2019), 224–240
-
[20]
V. Kumar, M. Malik, Existence, stability and controllability results of fractional dynamic system on time scales with application to population dynamics, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 741–766
-
[21]
N. Laledj, A. Salim, J. E. Lazreg, S. Abbas, B. Ahmad, M. Benchohra, On implicit fractional q-difference equations: analysis and stability, Math. Methods Appl. Sci., 45 (2022), 10775–10797
-
[22]
J. Oboyi, M. P. Ineh, A. Maharaj, J. O. Achuobi, O. K. Narain, Practical stability of Caputo fractional dynamic equations on time scale, Adv. Fixed Point Theory, 15 (2025), 19 pages
-
[23]
R. E. Orim, M. P. Ineh, D. K. Igobi, A. Maharaj, O. K. Narain, A novel approach to Lyapunov uniform stability of Caputo fractional dynamic equations on time scale using a new generalized derivative, Asia Pac. J. Math., 12 (2025), 16 pages
-
[24]
R. E. Orim, A. B. Panle, M. P. Ineh, A. Maharaj, O. K. Narain, Strict uniform stability analysis in terms of two measures of Caputo fractional dynamic systems on time scale, Adv. Fixed Point Theory, 15 (2025), 1–17
-
[25]
R. E. Orim, A. B. Panle, M. P. Ineh, A. Maharaj, O. K. Narain, Integral Stability of Impulsive Dynamic Systems on Time Scale, Asia Pac. J. Math., 12 (2025), 1–16
-
[26]
M. O. Udo, M. P. Ineh, E. J. Inyang, P. Benneth, Solving nonlinear Volterra integral equations by an efficient method, Int. J. Stat. Appl. Math., 7 (2022), 136–141
-
[27]
J. A. Ugboh, C. F. Igiri, M. P. Ineh, A. Maharaj, O. K. Narain, A novel approach to Lyapunov eventual stability of Caputo fractional dynamic equations on time scale, Asia Pac. J. Math., 12 (2025), 19 pages