]>
2013
6
4
80
The Randers \(\beta\)-change of More Generalized M-th Root Metrics
The Randers \(\beta\)-change of More Generalized M-th Root Metrics
en
en
A change of Finsler metric \(F(x,y)\rightarrow \bar{F}(x,y)\) is called a Randers \(\beta\)-change of \(F\), if \(\bar{F}(x,y) = F(x,y) + \beta(x,y)\), where \(\beta(x,y)=b_i(x)y^i\) is a one-form on a smooth manifold \(M\). The purpose of the present paper is devoted to studying the conditions for more generalized m-th root metrics \(\tilde{F}_1= \sqrt{A_1^{\frac{2}{m_1}}+B_1+C_1}\) and \(\tilde{F}_1= \sqrt{A_2^{\frac{2}{m_2}}+B_2+C_2}\), when is established Randers \(\beta\)-change.
305
310
Abolfazl
Taleshian
Dordi Mohamad
Saghali
m-th root metric
more generalized m-th root metric
Randers \(\beta\)-change.
Article.6.pdf
[
[1]
G. Randers, On the asymmetrical metric in the four-space of general relativity, Phys. Rev., (2) 59 (1941), 195-199
##[2]
M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1974), 477-498
##[3]
H. Shimada, On Finsler spaces with metric \(L = \sqrt[m]{a_{i_1i_2...i_m}y^{i_1}y^{i_2}...y^{i_m}}\), Tensor(N.S), 33 (1979), 365-372
##[4]
B. N. Prasad, A. K. Dwivedi, On conformal transformation of Finsler spaces with m-th root metric, Indian J. pure appl. Math., 33(6) (2002), 789-796
##[5]
A. Srivastava, P. Arora, Kropina change of mth root metric and its conformal transformation Bull, of Calcutta Mathematical Society, 103(3) (2011)
]