]>
2014
13
2
91
Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces
Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces
en
en
In the present paper, we continue the study on fuzzy soft topological spaces and
investigate the properties of fuzzy semi open (closed) soft sets, fuzzy semi soft interior
(closure), fuzzy semi continuous (open) soft functions and fuzzy semi separation axioms
which are important for further research on fuzzy soft topology. In particular, we study
the relationship between fuzzy semi soft interior fuzzy semi soft closure. Moreover, we
study the properties of fuzzy soft semi regular spaces and fuzzy soft semi normal spaces.
This paper, not only can form the theoretical basis for further applications of topology
on soft sets, but also lead to the development of information systems.
94
114
A.
Kandil
O. A. E.
Tantawy
S. A.
El-sheikh
A. M. Abd
El-latif
Soft set
Fuzzy soft set
Fuzzy soft topological space
Fuzzy semi soft interior
Fuzzy semi soft closure
Fuzzy semi open soft
Fuzzy semi closed soft
Fuzzy semi continuous soft functions
Fuzzy soft semi separation axioms
Fuzzy soft semi regular
Fuzzy soft semi \(T_i\)-spaces (i =1،2،3،4)
Fuzzy soft semi normal.
Article.1.pdf
[
[1]
B. Ahmad, A. Kharal, Mappings of fuzzy soft classes , Adv. Fuzzy Syst. Art. ID 407890, (2009), 1-6
##[2]
B. Ahmad, A. Kharal , Mappings of soft classes, New Math. Nat. Comput., 7 (3) (2011), 471-481
##[3]
B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., (2009), 1-6
##[4]
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications , 57 (2009), 1547-1553
##[5]
A. M. Aminpour, M. Seilani , Compact topological semigroups associated with oids , J. Math. Computer Sci. , 12 (3) (2014), 219-234
##[6]
S. Atmaca, I.Zorlutuna , On fuzzy soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 377-386
##[7]
A. Aygunoglu, H. Aygun , Introduction to fuzzy soft groups, Computers and Mathematics with Applications , 58 (2009), 1279-1286
##[8]
Bakir Tanay, M. Burcl Kandemir , Topological structure of fuzzy soft sets, Computer and mathematics with applications, 61 (2011), 2952-2957
##[9]
N. Cagman, F. Citak, S. Enginoglu, Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems, 1 (1) (2010), 21-35
##[10]
N. Cagman, S. Enginoglu, Soft set theory and uni-int decision making, European Journal of Operational Research , 207 (2010), 848-855
##[11]
C. L. Change, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190
##[12]
Eshagh Hosseinpour, T-rough fuzzy subgroups of groups, J. Math. Computer Sci. , 12 (3) (2014), 186-195
##[13]
Haci Aktas, Naim Cagman, Soft sets and soft groups, Innformation science, 177 (2007), 2726-2735
##[14]
M. Jain, M. P. S. Bhatia, A rough set based approach to classify node behavior in mobile ad hoc networks, J. Math. Computer Sci. , 10 (2) (2014), 64-78
##[15]
Jianyu Xiao, Minming Tong, Qi Fan, Su Xiao, Generalization of Belief and Plausibility Functions to Fuzzy Sets, Applied Mathematics Information Sciences, 6 (2012), 697-703
##[16]
A.Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, \(\gamma\)-operation and decompositions of some forms of soft continuity in soft topological spaces, Annals of Fuzzy Mathematics and Informatics , 7 (2014), 181-196
##[17]
A.Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi separation axioms and irresolute soft functions, Annals of Fuzzy Mathematics and Informatics , 8 (2014), 305-318
##[18]
D. V. Kovkov, V. M. Kolbanov, D. A. Molodtsov, Soft sets theory-based optimization , Journal of Computer and Systems Sciences Finternational , 46 (6) (2007), 872-880
##[19]
F. Lin , Soft connected spaces and soft paracompact spaces, International Journal of Mathematical Science and Engineering, 7 (2) (2013), 1-7
##[20]
J. Mahanta, P. K. Das, Results on fuzzy soft topological spaces, arXiv:1203.0634v1, (2012), -
##[21]
P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics , 9 (3) (2001), 589-602
##[22]
P. K. Maji, R. Biswas, A. R. Roy, intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (3) (2001), 677-691
##[23]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics with Applications , 45 (2003), 555-562
##[24]
P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Computers and Mathematics with Applications, 59 (2010), 1425-1432
##[25]
D. A. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications , 37 (1999), 19-31
##[26]
D. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application , Nechetkie Sistemy i Myagkie Vychisleniya , 1 (1) (2006), 8-39
##[27]
A. Mukherjee, S. B. Chakraborty, On Intuitionistic fuzzy soft relations, Bulletin of Kerala Mathematics Association, 5 (1) (2008), 35-42
##[28]
B. Pazar Varol, H. Aygun, Fuzzy soft topology, Hacettepe Journal of Mathematics and Statistics, 41 (3) (2012), 407-419
##[29]
D. Pei, D. Miao, From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE, 2 (2005), 617-621
##[30]
H. Rahimpoor, A. Ebadian, M. Eshaghi Gordji, A. Zohri , Fixed point theory for generalized quasi-contraction Maps in modular metric spaces, J. Math. Computer Sci. , 10 (1) (2014), 47-53
##[31]
S. Roy, T. K. Samanta, A note on fuzzy soft topological spaces, Annals of Fuzzy Mathematics and informatics , 3 (2) (2012), 305-311
##[32]
S. Roy, T. K. Samanta, An introduction to open and closed sets on fuzzy topological spaces , Annals of Fuzzy Mathematics and Informatics, (2012)
##[33]
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. , 61 (2011), 1786-1799
##[34]
J. K. Syed, L. A. Aziz , Fuzzy Inventory Model without Short-ages Using Signed Distance Method , Applied Mathematics Information Sciences, 1 (2007), 203-209
##[35]
B. Tanay, M. B. Kandemir, Topological structure of fuzzy soft sets, Computer and Math. with appl. , 61 (2011), 2952-2957
##[36]
Won Keun Min, A note on soft topological spaces, Computers and Mathematics with Applications , 62 (2011), 3524-3528
##[37]
Z. Xiao, L. Chen, B. Zhong, S. Ye, Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106
##[38]
Yong Chan Kim, Jung Mi Ko, Fuzzy G-closure operators , commun Korean Math. Soc., 18(2) (2008), 325-340
##[39]
L. A. Zadeh, Fuzzy sets, Information and Control , 8 (1965), 338-353
##[40]
Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems, 21 (2008), 941-945
]
A Model Ffor Prioritization of Social Security Home Health Services with Servqual Fahp (case Study Shariat Razavi Hospital)
A Model Ffor Prioritization of Social Security Home Health Services with Servqual Fahp (case Study Shariat Razavi Hospital)
en
en
Today, the modern age is mentioned as the quality stage and the quality is viewed as one of the most important competitive advantages for most of the organizations in order to promote the profitability, to reasonably reduce the costs, to maintain and to increase market share to boost customer satisfaction and to find new methods for a growing improvement of the quality of their products and services. On the other hand, due to the fact that quality has been defined as" what the customer wants", in order to boost customer satisfaction, first the quality needs to be measured in customers views by using a valid and comprehensive tool. Next, it would be considered within the improvement plans for the future. Here, the aim is to measure and to prioritize the factors influencing on the quality of the services provided by the treatment division of the social security organization (Case study: Shahid Mehdi Shariat Razabi Hospital). To do so, five aspects of SERVQUAL (reliability, responsiveness, assurance, empathy, tangibility) were used to analyze the gap of service quality based on the difference between the expectations and perceptions of the customers, with respect to the proposed model, five hypotheses will be provided which, in consequence, testing the hypotheses showed that all of the five aspects have negative gaps. Then by using FAHP process, the factors influencing the services quality will be prioritized which could be provided to the respective organizations as a Strategy.
115
123
Soheila
Fazli
Manouchehr
Omidvari
Ahmad
Sadeghi
Service quality
Customer Satisfaction
SERVQUAL
fuzzy Analysis Hierarchical process (FAHP)
Article.2.pdf
[
[1]
Wager Karolina, Learning a service context , goingbackage, managing service quality, 17 (2009), 635-655
##[2]
A. Brysland, A. Curry, Service improvements in public services usingSERVQUAL, Managing Service Quality, 11 (2008), 389-401
##[3]
S. Javadin, M. Almasi, Evaluation of the quality of the services of the social security organizations in view of the employees, Journal of Management Culture, 13 (2010), 69-94
##[4]
S. Keshavarz , the relationship between service quality aspects based on Servqual model for customer satisfaction in agencies of Irankhodro, Karaj, thesis, (2010), -
##[5]
Tahir IzahMohd, Abu Baker Nor Mazlina , Service quality gap and customersatisfaction of commercial banks in Malaysia, Journal of service marketing, 78 (2010), 69-96
]
Genetic Algorithms for Structure Prediction of New Bithiazole Molecular Crystals Methodology and Applications
Genetic Algorithms for Structure Prediction of New Bithiazole Molecular Crystals Methodology and Applications
en
en
This article describes the application of our distributed computing framework for crystal structure prediction (CSP), the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of bithiazole molecules. Using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. A genetic algorithm has been used to generate plausible crystal structures from the knowledge of only the unit cell dimensions and constituent elements. This strategy increases the efficiency of the DFT based GA by several orders of magnitude. This gain allows considerable increase in size and complexity of systems that can be studied by first principles. The Gaussian 03 package is used to perform the calculation of these atomic charges at the optimized geometry (HF/6-31G*level).Our results indicate that the method can consistently find the experimentally known crystal structures of bithiazole molecules. The structural of computational parameters are in agreement with the experimental data.
124
129
Akram
Hosseinian
Amin
Ghodousian
Genetic algorithms
Crystal structure prediction
DFT
framework
bithiazole.
Article.3.pdf
[
[1]
Maddox, Crystals from First Principles Nature, , 335 (1988), 201-208
##[2]
A. Gavezzotti, Accounts of Chemical Research , , 27 (1994), 309-321
##[3]
M. Eslami, J. Vahidi, M. Askarzadeh, Designing And Implementing A Distributed Genetic Algorithm For Optimizing Work Modes In Wireless Sensor Network, Journal of mathematics and computer Science , 11 (2014), 291-299
##[4]
S. A. Moezi, E. Zakeri, Y. Bazargan-Lari, A. Zare, 2d Shape Optimization Via Genetic Algorithm, Journal of mathematics and computer science , 11 (2014), 209-217
##[5]
J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal, V. Calgnaert, , Nature , 346 (1990), 1-343
##[6]
J. C. Schon, M. Jansen , , Angew. Chem. Int. Ed. Engl., 35 (1996), 1286-1294
##[7]
R. Martonák, A. Laio, M. Parrinello, , Phys. Rev. Lett., 90 (2003), 755-763
##[8]
A. R. Oganov, C. W. Glass, , J. Chem. Phys. , 124 (2006), 244-254
##[9]
A. R. Oganov, A. O. Lyakhov, M. Valle, , Acc. Chem. Res. , 44 (2011), 227-231
##[10]
C. M. Freeman, J. M. Newsam, S. M. Levine, C. R. A. Catlow, , J. Mater.Chem. , 3 (1993), 531-550
##[11]
D. J. Wales, J. P. K. Doye , , J. Phys. Chem. A , 101 (1997), 5111-5119
##[12]
S. Goedecker, , J. Chem Phys. , 120 (2004), 99-110
##[13]
S. Curtarolo et al., , Phys. Rev. Lett., 91 (2003), 135-143
##[14]
Y. Wang, J. Lv, L. Zhu, Y. Ma , Crystal Structure Prediction via Particle-Swarm Optimization , Phys. Rev. B 82 094116 , (2010)
##[15]
Y. Wang, J. Lv, L. Zhu, Y. Ma CALYPSO, A Method for Crystal Structure Prediction Comp., Phys. Commun. , 183 (2012), 2063-2070
##[16]
C. J. Pickard, R. J. Needs , Ab Initio Random Structure Searching , J. Phys. Condens. Matter, 23 (2011), 1-053201
##[17]
S. L. Price, , Adv. Drug Del. Rev., 56 (2004), 1-301
##[18]
I. A. Baburin, S. Leoni, G. Seifert , , The Journal of Physical Chemistry B , 112 (2008), 9437-9466
##[19]
M.Vatani, M.Asghari, G. Vakili-Nezhaad , Application Of Genetic Algorithm To Parameter Estimation In Liquid-liquid Phase Equilibrium Modeling, TJMCS., 5 (2012), 60-66
##[20]
M. Moghaddas, M. R. Dastranj, N. Changizi, M. Rouhani, Robust Control Of Dc Motor Using Fuzzy Sliding Mode Control And Genetic Algorithm, TJMCS., 2 (2011), 572-579
##[21]
G. H. Mohebpour, A. Ghorbannia Delavar, Some New Mutation Operators For Genetic Data Clustering, Journal of mathematics and computer science , 12 (2014), 282-294
##[22]
A. Hosseinian, A. R. Mahjoub, J. Mol , , Struct. , 985 (2011), 270-287
##[23]
A. Hosseinian, S. Jabbari, H. R. Rahimipour, A. R. Mahjoub, , J. Mol. Struct. , 1028 (2012), 215-221
##[24]
Y. Aogagi, H. Suguaa, N. Murugesa, G. M. Ehernfeld, L.-H. Chang, T. Ohgi, M. S. Sherkhani, M. P. KieKup, S. M. Hecht, , J Am ChemSoc, 104 (1982), 5237-5278
##[25]
J. M. Riodan, T. T. Sakai, , Biochemistry , 21 (1981), 805-814
##[26]
S. Hideaki, S. Atsumi, N. Yasuyuki, , Chem. Pharm. Bull., 45(1) (1997), 189-201
##[27]
T. Yan-Ni, Y. Pin, L. Qing-Shan, Z. Chun-Gui, , Chin. J. Chem , 14(5) (1996), 428-444
##[28]
Y. Ryuichi, M. Hitoshi, S.Hajimi , , Chem.Abstr., 18184 (1997), 127-137
##[29]
J. K. Politis, M. D. Curtis, , Polym.Prepr. , 38(2) (1997), 379-393
##[30]
Y. Takakazu, M. Tsukasa, S. Hajime, A. Minoru, K. Dharma, S. Shintaro, , Chem.Lett., 2 (1997), 139-150
##[31]
R. L. Gonzalez, Martin, D. C. Macromolecules, , , 30 (1997), 1524-1533
##[32]
J. K. Politis, M. D. Curtis, H. Yi, J. Mac Kaicki, , , 32 (1999), 2484-2499
##[33]
A. Hosseinian, S. Jabbari, A. R. Mahjoub, M. Movahedi , , J. Coord. Chem., 65 (2012), 2623-2633
##[34]
A. Hosseinian, H. R. Rahimipour, H. Haddadi, A. A. Ashkarran, A. R. Mahjoub, , J. Mol. Struct. , 1074 (2014), 673-678
]
The Meta-heuristic Binary Shuffled Frog Leaping and Genetic Algorithms in Selecting Efficient Significant Features
The Meta-heuristic Binary Shuffled Frog Leaping and Genetic Algorithms in Selecting Efficient Significant Features
en
en
Selecting the most suitable features among a collection of features to achieve accuracy, sensitivity and efficiency is considered as a big challenge in pattern recognition systems. In this study, the two binary genetic and the binary shuffled frog leaping evolutionary algorithms are evaluated with respect to efficient feature selection in a medical detecting system. The results point to the effectiveness of selection of the most suitable features through memetic Meta heuristic binary frog leaping in increasing the accuracy, sensitivity in detection and time saving in the Classification process against the genetic algorithm.
130
135
Saeed
Ayat
Mohammad Reza Mohammadi
Khoroushani
feature selection
genetic
Meta heuristic
shuffled frog leaping
skin lesions
Article.4.pdf
[
[1]
L. Ballerini, X. Li, R. B. Fisher, J. Rees, A query-by-example content-based image retrieval system of non-melanoma skin lesions, presented at the Proceedings of the First MICCAI international conference on Medical Content-Based Retrieval for Clinical Decision Support, London, UK (2010)
##[2]
M. Saberi, D. Safaai, Feature Selection Method Using Genetic Algorithm For The Classification Of Small and High Dimension Data, in International Journal on IEEE Transaction On Pattern Analysis And Machine Intelligence, VOL. 23, NO. 11 (2005)
##[3]
H. Chouaib, O. R. Terrades, S. Tabbone, F. Cloppet, N. Vincent, Feature selection combining genetic algorithm and Adaboost classifiers, in 19th International Conference on Pattern Recognition(IEEE), ICPR 2008, Tampa, FL (2008)
##[4]
E. P. Ephzibah, Cost Effective Approach on Feature selection Using Genetic Algorithms And Fuzzy Logic for Diabetes Diagnosi , in International Journal on Soft Computing(IJSC), Volume 2,No1 , February (2011)
##[5]
S. Zanganeh, R. Javanmard, M. Ebadzadeh, A Hybrid Approach for Features Dimension Reduction of Datasets using Hybrid Algorithm Artificial Neural Network and Genetic Algorithm-in Medical Diagnosis, in 4rd Iran Data Mining Conference , (IDMC) (2010)
##[6]
M. Eusuff, K. Lansey, Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm, in Journal of Water Resource Plan and Management, 3 (2003), 10-25
##[7]
M. Eusuff, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization, in journal on Engineering Optimization, 38(2) (2006), 129-154
##[8]
S. Chittineni, A. N. S. Pradeep, G. Dinesh, S. C. Satapathy, P. V. G. D. Prasad Reddy, A parallel hybridization of clonal selection with shuffled frog leaping algorithm for solving global optimization problems (P-AISFLA), Proceedings of the Second international conference on Swarm, Evolutionary, and Memetic Computing, Volume Part II, Visakhapatnam, Andhra Pradesh, India, Springer-Verlag, (2011), 211-222
##[9]
M. R. Mohammadi Khoroushani, S. Mahzounieh, Intelligent Skin Cancer Detection Software System based on the principles of telemedicine, in Journal of Hospital, 5 (2014), 55-60
##[10]
M. R. Mohammadi Khoroushani, S. Ayat, Early Melanoma Skin Cancer Detection by Co-Occurrence Matrix and Gabor Filter, 11th National Conference on information and communication technology, Kish, Iran (2013)
##[11]
P. T. A. M. Newton, Global Skin Atlas , Available: http://www.globalskinatlas.com. , (2005)
##[12]
G. S. A., Personalized learning and teaching resources for dermatologists today and tomorrow, Available at: https://www.dermquest.com. , (2013)
##[13]
N. Z. Wen Zhu, Ning Wang, Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS® Implementations, in NESUG proceedings: Health Care and Life Sciences, (2010)
]
Identification and Classification of Coronary Artery Disease Patients Using Neuro-fuzzy Inference Systems
Identification and Classification of Coronary Artery Disease Patients Using Neuro-fuzzy Inference Systems
en
en
In this research patients with coronary artery disease were identified and classified through the neuro-fuzzy network with the capacity of automatically extracting fuzzy rules. Fuzzy expert system was implemented using facilities and functions of MATLAB software (7.12.0 version). Network parameters, introductory and lower parameters, were trained by back-propagation error (gradient descent) method. The proposed method was evaluated through data collected from medical files of 152 patients with coronary angiography in Kowsar Hospital, Shiraz, Iran during September, 2013. The performance indicators of this system were specificity and sensitivity. The indicators, as extracted from testing results, were found to be 0.88 and 1, respectively.
136
141
Saeed
Ayat
Asieh
Khosravanian
Coronary Artery Disease
Neuro-fuzzy Network
Fuzzy Expert System.
Article.5.pdf
[
[1]
H. C. Koh, G. Tan , Data mining applications in healthcare, J Healthcare Info Manag, 19(2) (2005), 64-72
##[2]
Y. M. Chae, H. S. Kim, K. C. Tark, H. J. Park, S. H. Ho, Analysis of healthcare quality indicator using data mining and decision support system, Exp Sys Applic, 24(2) (2003), 167-72
##[3]
G. F. Filetcher, K. R. Oken, R. E. Safford , Comprehensive Rehabilitation of patients with coronary artery disease , Braunwald E, Zips Dp, Libby P. Heart Disease , A text book of cardiovascular medicine, 6(2) (2001), 1406-17
##[4]
U. Fuster, R. W. Alexander, R. O'rouke, Hurst’s The Heart, Wenger NK. Rehabilitation of the Patient With coronary heart disease, 10th edition, Mcgrow-Hill professional publish , 2 (2000), 1537-46
##[5]
M. C. Mancini, E. M. Cush, K. Sweatman, J. Dansby, Coronary artery bypass surgery: are outcomes influenced by demographics or ability to pay?, Ann Surg , 233(5) (2001), 617-22
##[6]
S. Mendis, P. Puska, B. Norrving, Global atlas on cardiovascular disease prevention and control , Geneva: World Health Organization, (2011)
##[7]
American Heart Association, , Available at: http://www.heart.org/HEARTORG, ()
##[8]
I. Mahmoudi, R. Askari moghadam, M. Moazzam, S. Sadeghian, Prediction model for coronary artery disease using neural networks and feature selection based on classification and regression tree, J Shahrekord Univ Med Sci., 15(5) (2013), 47-56
##[9]
S. Abe, R. Thawonmas , A Fuzzy Classifier with Ellipsoidal Regions, IEEE Trans. Fuzzy Syst., vol. 5, no. 3, (1997.)
##[10]
I. Turkoglu, A. Arslan, E. Ilkay , An intelligent system for diagnosis of the heart valve diseases with wavelet packet neural networks, Comput Biol Med , 33(4) (2003), 319-331
##[11]
L. Ohno-Machado, M. A. Musen, Sequential versus standard neural networks for pattern recognition: An example using the domain of coronary heart disease, Comput Biol Med, 27(4) (1997), 267-281
##[12]
S. Mehrabi, M. Maghsoudloo, H. Arabalibeik, Application of multilayer perceptron and radial basis function neural networks in differentiating between chronic obstructive pulmonary and congestive heart failure diseases, Expert Systems with Applications , 36 (2009), 6956-6959
##[13]
N. Forghany, M. Teshnelab, H. Abrishami Moghadam, M. Nakhjivani, Diagnosis of thyroid diseases using a hybrid Fuzzy Neural Network based on Linear Discriminate Analysis, 14th Iranian Conference on Biomedical Engineering, Tehran, Iran (2008)
]
Reconstruction of the Sturm-liouville Operators with Transmission and Parameter Dependent Boundary Conditions
Reconstruction of the Sturm-liouville Operators with Transmission and Parameter Dependent Boundary Conditions
en
en
Inverse problems of recovering the coefficients of discontinuous Sturm-Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied:
1) From Weyl m- function.
2) From spectral data.
142
156
Mostafa
Fallahi
Fereshte
Sharaghi
Mohammad
Shahriari
Inverse Sturm-Liouville problem
Weyl m-Function
discontinuous and parameter dependent boundary conditions.
Article.6.pdf
[
[1]
G. Freiling, V. Yurko, Inverse problem for Sturm-Liouville problems and their Applications, Nova Science , New York (2001)
##[2]
N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse problems, 21 (2005), 1315-1330
##[3]
J. Walter , Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math Zeitschrift, 133 (1973), 301-312
##[4]
C. T. Fulton , Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions , Proc. R. Soc. Edinburg, A, 77 (1977), 293-308
##[5]
C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, proc. R. Soc. Edinburg, B, 87 (1980), 1-34
##[6]
B. Keskin, A. Sinan, N. Yalkin , Inverse spectral problems for discontinuous Sturm-Liouville operator with eigenvalue dependent boundary conditions, , 60 (2011), 15-25
##[7]
B. M. Levitan, I. S. Sargsyan, Introduction to spectral Theory , American Mathematical Society, Providence, RI, USA ( 1975)
##[8]
D. G. Shepelsky, The inverse problem of reconstruction of the medium conductivity in a class of discontinuous and increasing functions , Spectral operator theory and related topics, 209-232, Advances in Soviet Math., 19, Amer. Math. Soc., providence, RI (1994)
##[9]
E. M. Russakovsk , Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditoins, Funct. Anal. Appl., 9 (1975), 358-359
##[10]
E. A. Codington, N. Levinson , Theory of Ordinary Differential Equations, McGraw-Hill, New York, NY, USA (1955)
##[11]
R. Kh. Amirov , On Sturm-Liouville operators with discontinuity conditions inside an interval, J. Math. Anal. Appl., 317 (2006), 163-176
##[12]
I. M. Gelfand, B. M. Levitan, On the determination of a differential equation from its spectral function Amer, Math. Soc. Transl. Ser., 21 (1955), 253-304
##[13]
Mohammad Shahriari, Aliasghar Jodayree Akbarfama, Gerald Teschl , Uniqueness for Inverse Sturm-Liouville Problems with a Finite Number of Transmission Conditions, J.Math. Anal. Appl., 395 (2012), 19-29
##[14]
N. B. kerimov, V. S. Mirzoev , On the basis properties of one spectral parameter in the boundary conditions, , 33 (1997), 116-120
##[15]
P. J. Browne, B. D. Sleeman, A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems, Inverse Problems, 13(6) (1997), 1453-1462
##[16]
V. A. Yurko, Reconstruction of singular non-self-adjoint differential operators with a singularity inside an interval, Differential Equations, 38(5) (2002), 678-694
##[17]
V. A. Yurko, Inverse Spectral problems for Linear Differential Operators and their Applications, Gordon and Breach, New York (2000)
##[18]
O. H. Hald , Discontinuous inverse eigenvalue problems , Comm. Pure Appl. Math., 37 (1984), 539-577
##[19]
V. A. Marchenko , The Sturm-Liouville operators and their applications, (Russian), (Kiev:Naukova Dumka) English transl, Basel: Birkhauser Verlag (1986)
##[20]
R. S. Anderssen, The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of to rational eigenfrequencies of the earth , Geophys. J. R. astr. Soc., 50 (1997), 303-309
##[21]
G. Teschl , Mathematical Methods in Quantum Mechanics, With Applications to Schrödinger Operators, Graduate Studies in Mathematics, Amer. Math. Soc., Rhode Island (2009)
]
Generalized Normed Spaces and Fixed Point Theorems
Generalized Normed Spaces and Fixed Point Theorems
en
en
Gähler ([4], [5]) introduced and investigated the notion of 2-metric spaces and 2-normed spaces in sixties. These concepts are inspired by the notion of area in two dimensional Euclidean space. In this paper, we choose a fundamentally different approach and introduce a possible generalization of usual norm retaining the distance analogue properties. This generalized norm will be called as G-norm. We show that every G-normed space is a G-metric space and therefore, a topological space and develop the theory for G-normed spaces. We also introduce G-Banach spaces and obtain some fixed point theorems.
157
167
Kamran Alam
Khan
Linear 2-normed space
invex set
G-normed space
G-metric space
Fixed point theorem
Article.7.pdf
[
[1]
B. C. Dhage, A study of some fixed point theorem, Ph.D. Thesis, Marathwada Univ., Aurangabad (1984)
##[2]
R. Freese, Y. J. Cho, S. S. Kim, Strictly 2-convex linear 2-normed spaces, J. Korean Math. Soc. , 29 (1992), 391-400
##[3]
R. Freese, Y. J. Cho , Geometry of Linear 2-normed Spaces, Nova Science Publ., New York (2001)
##[4]
S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr., 26 (1963), 115-148
##[5]
S. Gähler, Lineare 2-normierte Räume, Math. Nachr. , 28 (1964), 1-43
##[6]
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, I, Math. Nachr. , 40 (1969), 165-189
##[7]
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume , II, Math. Nachr , 40 (1969), 229-264
##[8]
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, III, Math. Nachr. , 41 (1969), 23-36
##[9]
H. Gunawan, Mashadi, On -normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639
##[10]
K. S. Ha, Y. J. Cho, A. White, Strictly convex and 2-convex 2-normed spaces , Math. Japonica, 33 (1988), 375-384
##[11]
K. A. Khan, Generalized n-metric spaces and fixed point theorems, to appear in Journal of Nonlinear and Convex Analysis, (), -
##[12]
A. Misiak, n-inner product spaces, Math.Nachr. , 140 (1989), 299-319
##[13]
Z. Mustafa, B. Sims , Some remarks concerning D-metric spaces, Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, July, (2003), 189-198
##[14]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis , 7 (2006), 289-297
##[15]
A. K. Sharma, A note on fixed points in 2-metric spaces , Indian J. Pure Appl. Math. , 11 (1980), 1580-1583
##[16]
R. K. Vats, S. Kumar, V. Sihag, Common fixed point theorem for expansive mappings in G-metric spaces, Journal of Mathematics and Computer Science , 6 (2013), 60-71
]
Numerical Solution of Maxwell Equations Using Local Weak Form Meshless Techniques
Numerical Solution of Maxwell Equations Using Local Weak Form Meshless Techniques
en
en
The aim of this work is to propose a numerical approach based on the local weak formulations and finite difference scheme to solve the Maxwell equation, especially in this paper we select and analysis local radial point interpolation (LRPI) based on multiquadrics radial basis functions (MQ-RBFs). LRPI scheme is the truly meshless method, because, a traditional non-overlapping, continuous mesh is not required, either for the construction of the shape functions, or for the integration of the local sub-domains. These shape functions which are constructed by point interpolation method using the radial basis functions have delta function property which allows one to easily impose essential boundary conditions. One numerical example is presented showing the behavior of the solution and the efficiency of the proposed method.
168
185
S.
Sarabadan
M.
Shahrezaee
J. A.
Rad
K.
Parand
Meshless weak form
Maxwell equation
Finite differences
Local radial point interpolation.
Article.8.pdf
[
[1]
T. Zhu, J. D. Zhang, S. N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech., 21 (1998), 223-235
##[2]
J. Wang, G. Liu, A point interpolation meshless method based on radial basis functions, Int. J. Numer. Meth. Eng., 54 (2002), 1623-1648
##[3]
G. Liu, Y. Gu, An Introduction to Meshfree Methods and Their Programing, Springer, Netherlands (2005)
##[4]
S. N. Atluri, H. G. Kim, J. Y. Cho, A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods, Comput. Mech., 24 (1999), 348-372
##[5]
T. Zhu, J. D. Zhang, S. N. Atluri , A meshless local boundary integral equation (LBIE) for solving nonlinear problems, Comput. Mech. , 22 (1998), 174-186
##[6]
T. Zhu, J. D. Zhang, S. N. Atluri , A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems , Eng. Anal. Bound. Elem., 23 (1999), 375-389
##[7]
J. Sladek, V. Sladek, C. Zhang , Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method, Comput. Mat. Sci. , 28 (2003), 494-504
##[8]
J. Sladek, V. Sladek, J. Krivacek, C. Zhang, Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids, Comput. Mech. , 32 (2003), 169-176
##[9]
A. Shirzadi, V. Sladek, J. Sladek, A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation, Eng. Anal. Bound. Elem., 37 (2013), 8-14
##[10]
S. M. Hosseini, V. Sladek, J. Sladek, Application of meshless local integral equations to two dimensional analysis of coupled non-fick diffusion-elasticity, Eng. Anal. Bound. Elem. , 37 (2013), 603-615
##[11]
V. Sladek, J. Sladek, Local integral equations implemented by MLS-approximation and analytical integrations, Eng. Anal. Bound. Elem., 34 (2010), 904-913
##[12]
X. Li , Meshless galerkin algorithms for boundary integral equations with moving least square approximations, Appl. Numer. Math. , 61 (2011), 1237-1256
##[13]
J. C. Maxwell , A dynamical theory of the electromagnetic field, R. Soc. Trans. , 155 (1865), 459-512
##[14]
O. Heaviside, On the forces, stresses and fluxes of energy in the electromagnetic field, Phil. Trans. R. Soc., 183 (1892), 423-480
##[15]
K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation , 14 (1966), 302-307
##[16]
F. B. Belgacem, A. Buffa, Y. Maday, The mortar finite element method for 3D Maxwell equations: first results, SIAM J. Numer. Anal. , 39 (2002), 880-901
##[17]
G. Rodrigue, D. White, A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids, SIAM J. Sci. Comput., 23 (2001), 683-701
##[18]
S. J. Lai, B. Z. Wang, Y. Dua , Meshless radial basis function method for transient electromagnetic computations, IEEE Trans. Magn., 44 (2008), 2288-2295
##[19]
G. Liu, Y. Gu, A point interpolation method for two-dimensional solid, Int. J. Numer. Meth. Eng. , 50 (2001), 937-951
##[20]
G. Liu , Meshfree methods: moving beyond the finite element method, Boca Raton: Taylor and Francis/CRC Press, (2009)
##[21]
G. Liu, Y. Gu, A matrix triangularization algorithm for the polynomial point interpolation method , Comput. Meth. Appl. Mech. Eng. , 192 (2003), 2269-2295
##[22]
E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates, Comput. Math. Appl. , 19 (1990), 127-145
##[23]
E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics II. solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19 (1990), 147-161
##[24]
G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, Vanderbilt University Press, Nashville (1997)
##[25]
G. Liu, Y. Gu, A local radial point interpolation method (LRPIM) for free vibration analysis of 2-d solids, J. Sound. Vib., 246 (2001), 29-46
##[26]
G. R. Liu, G. Y. Zhang, Y. T. Gu, Y. Y. Wang, A meshfree radial point interpolation method (RPIM) for three-dimensional solids , Comput. Mech. , 36 (2005), 421-430
##[27]
M. Dehghan, R. Salehi , A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J. Comput. Appl. Math. , 268 (2014), 93-110
##[28]
J. Li , Unified Analysis of Leap-Frog Methods for Solving Time-Domain Maxwells Equations in Dispersive Media, J. Sci. Comput., 47 (2011), 1-26
]