]>
2015
15
3
84
Application of Differential Transform Method for El Nino Southern Oscillation (enso) Model with Compared Adomian Decomposition and Variational Iteration Methods
Application of Differential Transform Method for El Nino Southern Oscillation (enso) Model with Compared Adomian Decomposition and Variational Iteration Methods
en
en
We consider two nonlinear El Nino Southern Oscillation (ENSO) model to obtain approximate solutions
with differential transform method for the first time. Efficiency, accuracy and error rates of solutions are
compared with analytic solution, variational iteration and adomian decomposition solutions on the given
tables and figures.
167
178
Murat
Gubes
H. Alpaslan
Peker
Galip
Oturanc
Nonlinear equation
Enso Model
Differential Transform Method
Adomian Decomposition Method
Variational Iteration Method.
Article.1.pdf
[
[1]
J. H. He, A variational iteration approach to nonlinear problems and its applications, Mech. Appl., 20 (1998), 30-31
##[2]
J. K. Zhou, Differential Transformation and its Applications for Electrical Circuits, Huarjung University Press, Wuuhahn, China (1986)
##[3]
J. L. Li, Adomian's decomposition method and homotopy perturbation method in solving nonlinear equations, Journal of Computational and Applied Mathematics, 228 (2009), 168-173
##[4]
I. H. Abdel-Halim Hassan, Different applications for the differential transformation in the differential equations, Applied Mathematics and Computation, 129 (2002), 183-201
##[5]
A. Wazwaz, The modified decomposition method for analytic treatment of differential equations, Applied Mathematics and Computation, 173 (2006), 165-176
##[6]
H. A. Peker, O. Karaoglu, G. Oturanc, The Differential Transformation Method and Pade Approximant for a Form of Blasius Equation, Mathematical and Computational Applications, 16(2) (2011), 507-513
##[7]
Y. Keskin, A. Kurnaz, M. E. Kiris, G. Oturanc, Approximate solutions of generalized pantograph equations by the differential transform method, International Journal of Nonlinear Sciences and Numerical Simulation, 8(2) (2011), 159-164
##[8]
M. Saravi, A. Nikkar, M. Hermann, J. Vahidi, R. Ahari, A New Modified Approach for solving sevenorder Sawada-Kotara equations, Journal of Mathematics and Computer Science, 6 (2013), 230-237
##[9]
M. Rabbani, New Homotopy Perturbation Method to solve non-linear problems, Journal of Mathematics and Computer Science, 7 (2013), 272-275
##[10]
T. Allahviranloo, A. Armand, S. Pirmuhammadi, Variational Homotopy Perturbation Method: An efficient scheme for solving partial differential equations in fluid mechanics, Journal of Mathematics and Computer Science, 9 (2014), 362-369
##[11]
J. FEI-FEI, An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model, Journal of the Atmospheric Sciences, 54 (1996), -
##[12]
Y. Zeng, The Laplace-Adomian-Pade Technique for the ENSO Model, Mathematical Problems in Engineering, Article ID 954857 , (2013), 1-4
##[13]
J. Q. Mo, W. T. Lin, J. Zhu, The variational iteration solving method for El Nino/La Nino-southern oscillation model, Advances in Mathematics, 35(2) (2006), 232-236
##[14]
J. Q. Mo, W. T. Lin , Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climate, Journal of Systems Science & Complexity, 24(2) (2011), 271-276
##[15]
C. Xiao-Qun, S. Jun-Qiang, Z. Xiao-Qian, Z. Li-Lun, Z. Wei-Min, Z. Jun, Modified variational iteration method for an El Niňo Southern Oscillation delayed oscillator, Chin. Phys. B, 21(2) (2012), 1-020203
##[16]
Z. Xian-Chun, L. Yi-Hua, W. T. Lin, J. Q. Mo, Homotopic mapping solution of an oscillator for the El nino / La Nina-southern oscillation, Chinese Physics B, 18(11) (2009), 4603-05
##[17]
J. Q. Mo, W. T. Lin, H. Wang, A perturbed Solution of Sea-Air Oscillator for the Enso Mechanism, Journal of Systems Science & Complexity, 18(2) (2005)
##[18]
J. Q. Mo, W. T. Lin , Asymtotic solution for El Nino-southern oscillation of nonlinear model, Applied Mathematics-A Journal of Chinese Universities, 23(3) (2008), 251-255
##[19]
L. Yi-Hua, W. T. Lin , J. Q. Mo, Asymptotic Solutions to a Nonlinear Climate Oscillation Model, Atmospheric And Oceanic Science Letters, 1(1) (2008), 40-44
##[20]
J. Q. Mo, W. T. Lin, H. Wang, A Class Of Homotopıc Solvıng Method For Enso Model, Acta Mathematica Scientia, 29B(1) (2009), 101-110
##[21]
J. Q. Mo, W. T. Lin , Perturbed solution for the ENSO nonlinear model, Acta Phys Sinica, 53(4) (2004), 996-998
##[22]
D. Zeng-Ji, W. T. Lin, J. Q. Mo, Perturbation method of studying the EI Niňo oscillation with two parameters by using the delay sea air oscillator model, Chin. Phys. B, 21(9) (2012), 1-090201
##[23]
Z. Xian-Chun, Y. Jing-Sun, J. Q. Mo, Asymtotic solving method for sea -air coupled oscillator ENSO model, Chinese Physics B , 21(3) (2012)
##[24]
J. Q. Mo, H. Wang, W. T. Lin, L. Yi-Hua, Variational iteration method for solving the mechanism of the Equatorial Eastern Pasific El Nino-Southern Oscillation, Chinese Physics, 15(4) (2006), 671-05
]
Numerical Solution of Linear Emden Fowler Boundary Value Problem in Fuzzy Environment
Numerical Solution of Linear Emden Fowler Boundary Value Problem in Fuzzy Environment
en
en
In this paper a numerical method for solving Tow Point Fuzzy Boundary Value Problems '(TPFBVP) involving linear Emden Folwer equation is considered. The finite difference method (FDM) for solving TPFBVP is introduced and the proof of convergence of approximate solutions is brought in detail. Finally a numerical example is solved for illustrating the capability of method.
179
194
A. F.
Jameel
Sarmad A.
Altaie
Fuzzy numbers
fuzzy differential equations
two point fuzzy boundary value problems
Finite difference method.
Article.2.pdf
[
[1]
Z. Akbarzadeh Ghanaie, M. Mohseni Moghadam, Solving fuzzy differential equations by Runge-Kutta method, The Journal of mathematics and computer science, 2(2) (2011), 208-221
##[2]
M. Rostami, M. Kianpour, E. bashardoust, A numerical algorithm for solving nonlinear fuzzy differential equations, The Journal of mathematics and computer science, 2(4) (2011), 667-671
##[3]
R. A. Usmani, Discrete methods for a boundary value problem with engineering applications, Math. Comput., 32 (1978), 1087-1096
##[4]
S. Ghosh, D. Roy, Numeric-Analytic Form of the Adomian Decomposition Method for Two-Point Boundary Value Problems in Nonlinear Mechanics, J. Eng. Mech. , 133(10) (2007), 1124-1133
##[5]
T. Ray Mahapatra, A. S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer., 38(6) (2002), 517-52
##[6]
R. Sharma, A. Ishak, I. Pop, Partial Slip Flow and Heat Transfer over a Stretching Sheet in a Nano fluid, http://dx.doi.org/10.1155/2013/724547. , 2013 (2013), 1-7
##[7]
N. Kopteva, N. Madden, M. Stynes, Grid equidistribution for reaction-diffusion problems in one dimension, Numerical Algorithms. , 40(30) (2005), 305-322
##[8]
N. Kopteva, M. Stynes, A robust adaptive method for a quasilinear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001), 1446-1467
##[9]
F. Schlögl, Chemical reaction models for non-equilibrium phase transitions, Z. Physik. , 253 (1972), 147-161
##[10]
K. Fukui, The path of chemical reactions - the IRC approach, Chem. Res. , 14 (12) (1981), 363-368
##[11]
M. Goebel, U. Raitums, Optimal control of two point boundary value problems, Control and Information Sciences., 143 (1990), 281-290
##[12]
M. Popescu, Two-point boundary value problem of control systems with parameter, CCCA., 29 (2011), 1-6
##[13]
A. Omer, O. Omer, A Pray and Pretdour Model with Fuzzy Intial Values, Hacettepe Journal of Mathematics and Statistics, 41(3) (2013), 387-395
##[14]
M. S. El Naschie, From Experimental Quantum Optics to Quantum Gravity Via a Fuzzy Kahler Manifold, Chaos Solution and Fractals, 25 (2005), 969-977
##[15]
M. F. Abbod, D. G. Von Keyserlingk, D. A. Linkens, M. Mahfouf, Survey of Utilization of Fuzzy Technology in Medicine and Healthcare, Fuzzy sets and system, 120 (2001), 331-349
##[16]
Barro, R. Marin, Fuzzy Logic in Medicine, Heidelberg: Physica - Verlag, (2002)
##[17]
T. Allahviranloo, K. Khalilpour, A Numerical Method for Two-Point Fuzzy Boundary Value Problems, World Applied Sciences Journal , 13 (10) (2011), 2137-2147
##[18]
T. Allahviranloo, K. Khalilpour, An Initial-value Method for Two-Point Fuzzy Boundary Value Problems, World Applied Sciences Journal, 13 (10) (2011), 2148-2155
##[19]
D. Dubois, H. Prade, Towards fuzzy differential calculus, Part 3: Differentiation, Fuzzy Sets and Systems, 8 (1982), 225-233
##[20]
S. Seikkala, On the Fuzzy Initial Value Problem, Fuzzy Sets and Systems, 24(3) (1987), 319-330
##[21]
M. Ghanbari, Numerical Solution of Fuzzy Initial Value Problems Under Generalization Differentiability by HPM, Int.J.Industrial Mathematics , 1(1) (2009), 19-39
##[22]
O. S. Fard, An Iterative Scheme for the Solution of Generalized System of Linear Fuzzy Differential Equations, World Applied Sciences Journal., 7 (2009), 1597-11604
##[23]
H. Saberi Najafi, F. Ramezani Sasemasi, S. Sabouri Roudkoli, S. Fazeli Nodehi, Comparison of two methods for solving fuzzy differential equations based on Euler method and Zadeh’s extension, , 2(2) (2011), 295-306
##[24]
L. A. Zadeh, The Concept of A linguistic Truth Variable and Its Application to Approximate Reasoning-I, II, III, Inform. Sci., 8 (1975), 199-249
##[25]
S. Sriram, P. Murugadas, On Semiring of Intuitionstic Fuzzy Matrices, Applied Mathematical Sciences, 4 (23) (2010), 1099-1105
##[26]
S. Siah Mansouri, N. Ahmady , Fuzzy Differential Equation by using Characterization Theorem, communication in numerical analysis, doi:10.5899/2012/cna-00054., (2012), -
]
A New Homotopy Perturbation Method for Solving Two-dimensional Reaction-diffusion Brusselator System
A New Homotopy Perturbation Method for Solving Two-dimensional Reaction-diffusion Brusselator System
en
en
In this article, a New Homotopy perturbation method (NHPM) is presented to obtain an approximate
solution of a class of two-dimensional initial value problems. In this method, the first appropriate
approximate solution has been used to reach the exact solution of the equation. Some examples are
presented to validate the ability of the proposed method.
195
203
Z.
Ayati
J.
Biazar
S.
Ebrahimi
New Homotopy perturbation method
reaction-diffusion Brusselato
system of partial differential equations.
Article.3.pdf
[
[1]
R. Lefever, G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 1-267
##[2]
G. Nicolis, I. Prigogine, Self-Organization in Non-Equilibrium Systems, Wiley/ Interscience, New York ( 1977. )
##[3]
I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II, J. Phys. Chem. , 48 (1968), 1695-1700
##[4]
J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys., 58 (1973), 1-3919
##[5]
AM. Wazwaz, The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model, Appl. Math. Compute. , 110 (2000), 251-264
##[6]
G. Adomian, The diffusion Brusselator equation, Compute. Math. Appl. , 29 (5) (1995), 1-3
##[7]
E. H. Twizell, A. B. Gumel, Q. Cao, A second-order scheme for the ''Brusselator'' reaction–diffusion system, J. Math. Chem. , 26 (1999), 297-316
##[8]
Ang Whye-Teong, The two-dimensional reaction–diffusion Brusselator system: a dual-reciprocity boundary element solution, Eng. Anal. Bound. Elem, 27 (2003), 897-903
##[9]
J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International .Journal of Non-linear Mecha.nics, 35 (2000), 37-43
##[10]
S. Momani, Z. Odibat , Homotopy Perturbation Method for Nonlinear Partial Differential Equations of Fractional Order, Phys. Lett. A, 365 (2007), 345-350
##[11]
Abid KAMRAN, Umer HAYAT, Ahmet YILDIRIM, Syed Tauseef MOHYUD-DIN, A Reliable Algorithm for Fractional Schrödinger Equations, Walailak Journal of Science and Technology, 10 (4). , (2013)
##[12]
Z. Odibat, S. Momani , Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order, Chaos Solitons Fractals, 36 (2008), 167-174
##[13]
J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering , 178 (1999), 257-262
##[14]
Mohamed I. A. Othman, A. M. S. Mahdy, R. M. Farouk, Numerical Solution of 12th Order Boundary Value Problems by Using Homotopy Perturbation Method, The journal of Mathematics and computer science , 1 (2010), 14-27
##[15]
M. Matinfar, M. Saeidy, Application of Homotopy perturbation method for fuzzy integral equations, the journal of Mathematics and computer science , 1 (2010), 375-385
##[16]
M. Rabbani, New Homotopy Perturbation Method to Solve Non-Linear Problems, the journal of Mathematics and computer science , 7 (2013), 272-275
]
Singular Values of One Parameter Family \(\lambda\frac{b^2-1}{z}\)
Singular Values of One Parameter Family \(\lambda\frac{b^2-1}{z}\)
en
en
The singular values of one parameter family of entire functions \(f_\lambda(z)=\lambda\frac{b^2-1}{z}\) and \(f_\lambda(0)=\lambda\ln b, \quad \lambda\in \mathbb{R}-\{0\}, z\in \mathbb{C}, b>0, b\neq 1\) are investigated. It is shown that all the critical values of \(f_\lambda(z)\) belong
to the right half plane for \(0 < b <1\) and the left half plane for \(b >1\). It is described that the function \(f_\lambda(z)\)
has infinitely many singular values. It is also found that all these singular values are bounded and lie inside
the open disk centered at origin and having radius \(\mid\lambda\ln b\mid\).
204
208
Mohammad
Sajid
Critical values
Singular values.
Article.4.pdf
[
[1]
R. L. Devaney, Complex dynamics and entire functions. Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets, Proc. Symp. Appl. Math. Ed. R. L. Devaney. American Mathematical Society, 49 (1994), 181-206
##[2]
R. L. Devaney, \(Se^x\): Dynamics, topology, and bifurcations of complex exponentials, Topology and its Applications . doi:10.1016/S0166-8641(00)00099-7 , 110 (2001), 133-161
##[3]
R. L. Devaney, X. Jarque, M. M. Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Int. J. Bifur. Chaos , 15 (10) (2005), 3281-3293
##[4]
T. Kuroda, C. M. Jang, Julia set of the function \(zexp(z +\mu )\) II , Tohoku Math. Journal, doi: 10.2748/tmj/1178225063. , 49 (1997), 557-584
##[5]
T. Nayak, M. G. P. Prasad, Julia sets of Joukowski-Exponential maps, Complex Anal. Oper. Theory, doi: 10.1007/s11785-013-0335-1., 8 (5) (2014), 1061-1076
##[6]
N. Yanagihara, K. Gotoh, Iteration of the function cexp[az + b/z], Math. Japonica, 48 (3) (1998), 341-348
##[7]
M. G. P. Prasad, T. Nayak, Dynamics of certain class of critically bounded entire transcendental functions, J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.06.095. , 329 (2) (2007), 1446-1459
##[8]
G. P. Kapoor, M. G. P. Prasad, Dynamics of \((e^z-1)/z\): the Julia set and bifurcation, Ergod. Th. & and Dynam. Sys. , 18 (6) (1998), 1363-1383
##[9]
M. Sajid, Singular values and real fixed points of one parameter family of function zbz/(bz-1), Journal of Mathematics and System Science , 4 (7) (2014), 486-490
##[10]
M. Sajid, Singular values of a family of singular perturbed exponential map, British Journal of Mathematics and Computer Science doi: 10.9734/BJMCS/2014/9598. , 4 (12) (2014), 1678-1681
##[11]
M. Sajid, Singular values and fixed points of family of generating function of bernoulli's numbers, J. Nonlinear Sci. Appl. , 8 (2015), 17-22
##[12]
W. Bergweiler, M. Haruta, H. Kriete, H. G. Meier, N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Series A. I. Math , 18 (1993), 369-375
##[13]
S. Morosawa, Y. Nishimura, M. Taniguchi, T. Ueda, Holomorphic Dynamics, Cambridge University Press, (2000)
##[14]
J. Zheng, On fixed-points and singular values of transcendental meromorphic functions, Science China Mathematics, doi: 10.1007/s11425-010-0036-4., 53 (3) (2010), 887-894
]
A Fresh View on Numerical Correction and Optimization of Monte Carlo Algorithm and Its Application for Fractional Differential Equation
A Fresh View on Numerical Correction and Optimization of Monte Carlo Algorithm and Its Application for Fractional Differential Equation
en
en
In this paper we have used the Mote Carlo algorithm to obtain solution of some fractional differential equation. The fractional derivative is described in the Jumarie sense. The results obtained by this method have been compared with the exact solutions. Furthermore, comparisons indicate that is a very good agreement between the solutions of Monte Carlo algorithm and the exact solutions in terms of accuracy.
209
215
Khosro
Sayevand
Fractional Calculus
Monte Carlo algorithm
Jumarie derivative.
Article.5.pdf
[
[1]
K. Sayevand, Efficient solution of fractional initial value problems using expanding perturbation approach, Journal of mathematics and computer Science, 8 (2014), 359-366
##[2]
J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation , 16 (2011), 1140-1153
##[3]
Y. Lai, Adaptive Monte Carlo methods for matrix equations with applications, Journal of Computational and Applied Mathematics, 231 (2009), 705-714
##[4]
C. J. K. Tan, Solving systems of linear equations with relaxed Monte Carlo method, The Journal of Supercomputing, 22 (2002), 113-123
##[5]
V. N. Alexandrov, C. G. Martel, J. Straburg, Monte Carlo scalable algorithms for computational finance, Procedia Computer Science, 4 (2011), 1708-1715
##[6]
J. Halton, Sequential Monte Carlo, Proceedings of the Cambridge Philosophical Society, 58 (1962), 57-78
##[7]
L. Li, J. Spanier, Approximation of transport equations by matrix equations and sequential sampling, Monte Carlo Methods and Applications, 3 (1997), 171-198
##[8]
G. Jumarie, Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable functions further results, Computers and Mathematics with Applications, 51 (2006), 1367-1376
##[9]
G. Jumarie, Table of some basic fractional calculus formulate derived from a modified Riemann-Liouville derivative for non-differentiable functions, Applied Mathematics Letters, 22 6 (2009), 378-385
##[10]
N. Faraz, Y. Khan, H. Jafari, M. Madani, Fractional variational iteration method via modified Riemann, Liouville derivative, (doi:10.1016/j.jksus.2010.07.025), 23 (2011), 413-417
##[11]
F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, Journal of Computational and Applied Mathematics , 118 (2000), 283-299
]
Direct and Fuzzy Transform Methods for the Stabilization Vibrations of a Damped Linear String
Direct and Fuzzy Transform Methods for the Stabilization Vibrations of a Damped Linear String
en
en
In this paper, the asymptotic behaviour of the vibrations of a damped linear string is studied. The exponential stability result of the overall system is obtain directly by means of an exponential energy decay estimate. A closed form approximate numerical result is constructed by fuzzy transform method to support and implement the stability result.
216
227
Rajib
Ghosh
Ganesh. C.
Gorain
Samarjit
Kar
Uniform stability
exponential energy decay estimate
Layapunov function
fuzzy transform method.
Article.6.pdf
[
[1]
G. Chen, A note on the boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981), 106-113
##[2]
Y. C. Fung, Foundations of solid mechanics, Prentice- Hall , New Delhi (1968)
##[3]
G. C. Gorain, Stabilization of a Quasi-linear vibrations of an Inhomogeneous Beam, IEEE Trans.Automat.Contr., 52 (2007), 1690-1695
##[4]
G. C. Gorain, Exponential Energy Decay Estimate for the solutions of Internally Damped Wave equation in a Bounded domain, J.Math.Anai.Appl, 216 (1997), 510-520
##[5]
G. C. Gorain, Exponentially Energy Decay Estimate for the Solutions of n-Dimensional Kirchhoff type Wave Equation, Applied Mathematics and Computative, doi:10.1016/j. amc. 2005.11.03. , 177 (2006), 235-242
##[6]
G. C. Gorain, Exponential stabilization of longitudinal vibration of an inhomogeneous beam, J. Math. Sci. (N.Y.), (2014)
##[7]
R. Ghosh, S. Chowdhury, G. C. Gorain, S. Kar, Uniform stabilization of the telegraph equation with a support by fuzzy transform method, QScience connect 2014:19, (2014)
##[8]
V. Komornik, Rapid Boundary Stabilization of Wave Equations, SIAM Journal of control and Optimization, doi:10.1137/0329011. , 29 (1991), 197-208
##[9]
V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, John Wiley- Masson , Paris (1994)
##[10]
J. Lagnese, Note on boundary stabilization of wave equation, SIAM J. Control Optim., 26 (1988), 1250-1256
##[11]
D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Dordrecht, The netherlands: Kluwer (1991)
##[12]
S. Mishra, G. C. Gorain, Stability of an inhomogeneous damped vibrating string, Application and applied mathematics, 9(1) (2014), 435-448
##[13]
P. K. Nandi, G. C. Gorain, S. Kar, Boundary stabilization of torsional vibration of a solar panel , Appl. Math, 7 (2012), 455-463
##[14]
P. K. Nandi, G. C. Gorain, S. Kar, Stability of vibrations for some Kirchoff equations with dissipating, Application of Mathematics, 59(2) (2014), 205-215
##[15]
I. Perfilieva, E. Chaldeeva, Fuzzy Transformation and its Applications, In Proc.Of the 4th czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, 124 (2001), 1-116
##[16]
M. Saharuz, Bounded-Input-Bounded-Output Stability of Damped Non-Linear String, IEEE.Trans.Auto.Control, 41 (1996), 1179-1182
##[17]
M. Stepnicka, R. Valasek, Fuzzy Transforms For Functions With Two Variables, In:Proc.Of the 6th Czech-Japan Seminar On Data Analysis and Decision making Under Uncertainty , Valtice, Czech Republic, Sept., 20-23 (2003), 100-107
##[18]
M. Stepnicka, R. Valasek, Fuzzy Transforms and Their Application to Wave Equation, Journal of Electrical Engineering, 55(12/s) (2004), 7-10
##[19]
L. A. Zadeh, Fuzzy sets and systems, System Theory (Fox J., ed.), Microwave Research Institute Symposia Series XV”, Polytechnic Press, Brooklyn, NY, 29-37. Reprinted in Int. J. of General Systems, 17, 1990 (1965), 129-138
]
Numerical Solutions of Mrlw Equation by a Fully Implicit Finite-difference Scheme
Numerical Solutions of Mrlw Equation by a Fully Implicit Finite-difference Scheme
en
en
In the present paper, a fully implicit finite difference method is introduced for the numerical
solution of the modified regularized long wave (MRLW) equation. The accuracy of the method is examined
by different problems of the MRLW equation. The results and comparisons with analytical and other
numerical invariants clearly show that results obtained using the fully implicit finite difference scheme are
precise and reliable.
228
239
Bilge
Inan
Ahmet Refik
Bahadir
Modified regularized long wave equation
Fully implicit finite difference method
Solitary waves.
Article.7.pdf
[
[1]
D. H. Peregrine, Calculations of development of an undular bore, J. Fluid Mech. , 25 (1966), 321-330
##[2]
A. K. Khalifa, K. R. Raslan, H. M. Alzubaidi, A collocation method with cubic B-splines for solving the MRLW equation, J. Comput. Appl. Math., 212 (2008), 406-418
##[3]
A. K. Khalifa, K. R. Raslan, H. M. Alzubaidi, Numerical study using ADM for the modified regularized long wave equation, Appl. Math. Modelling, 32 (2008), 2962-2972
##[4]
T. Achouri, K. Omrani, Application of the homotopy perturbation method to the modified regularized long-wave equation, Numer. Meth. Part. D. E. , 26 (2009), 399-411
##[5]
K. R. Raslan, Numerical study of the modified regularized long wave (MRLW) equation, Chaos, Solitons and Fract. , 42 (2009), 1845-1853
##[6]
S. M. Hassan, D. G. Alamery, B-splines collocation algorithms for solving numerically the MRLW equation, Int. J. Nonlin. Sci. , 8 (2009), 131-140
##[7]
K. R. Raslan, T. S. El-Danaf, Solitary waves solutions of the MRLW eqution using quintic B-splines, J. King Saud University (Science), 22 (2010), 161-166
##[8]
Y. Dereli, Solitary wave solutions of the MRLW equation using radial basis functions, Numer. Meth. Part. D. E., 28 (2012), 235-247
##[9]
F. Haq, S. Islam, I. A. Tirmizi, A numerical technique for solution of the MRLW equation using quartic B-splines, Appl. Math. Modelling, 34 (2010), 4151-4160
##[10]
Y. Dereli, Numerical solutions of the MRLW equation using meshless kernel based method of lines, Int. J. Nonlin. Sci. , 13 (2012), 28-38
##[11]
Y. Khan, R. Taghipour, M. Falahian, A. Nikkar, A new approach to modified regularized long wave equation, Neural Comput. & Applic. Doi 10.1007/s00521-012-1077-0. , 23 (2013), 1335-1341
##[12]
S. B. G. Karakoc, T. Geyikli, Petrov-Galerkin finite element method for solving the MRLW equation, Math. Sciences, 7 (2013), 1-10
##[13]
İ. Dağ, D. Irk, M. Sarı, The extended cubic B-spline algorithm for a modified regularized long wave equation, Chin. Phys. B, 22 (2013), 1-040207
##[14]
A. R. Bahadır, Numerical solution for one-dimensional Burgers' equation using a fully implicit finite-difference method, Int. J. Appl. Math. , 1 (1999), 897-909
##[15]
A. R. Bahadır, A fully implicit finite-difference scheme for two-dimensional Burgers' equations, Appl. Math. Comput. , 137 (2003), 131-137
##[16]
P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc., 85 (1979), 143-160
##[17]
B. İnan, A. R. Bahadır, A numerical solution of the equal width wave equation using a fully implicit finite difference method, Turkish Journal of Mathematics & Computer Science, Article ID 20140037, (2014), 1-14
]
An Image Steganography Method Resistive to Fall Off Boundary Value Problem with Five Pixel Pair Differencing
An Image Steganography Method Resistive to Fall Off Boundary Value Problem with Five Pixel Pair Differencing
en
en
Although secret information can be securely hidden in the cover image using PVD approach, it suffers from
fall off boundary problem especially when the pixel values are close to the boundaries. In the PVD
approach, the pixel values of two pixels in a pair are so adjusted that the difference between these two pixel
values represents the hidden information. But in this process, sometimes the pixel values exceed the
boundaries and the cover image becomes unsuitable for hiding secret information. The proposed method is
robust against the fall off boundary problem. Cover image is partitioned in the blocks of 2 × 3 pixels forming
five pairs in each block. Difference value is calculated for each pair. If the difference value of at least one
pair is greater than 127, the block is marked as edged block otherwise it is marked as smooth block. Fall
off boundary problem is severe for edged blocks. Hence LSB substitution method is used for hiding secret
data in the edged block and PVD approach is used for hiding secret data in smooth block. A separate
selection process is used for selecting edged blocks for hiding secret data since hiding data using LSB
substitution method can convert it into smooth block. This conversion of edged block into smooth block
during embedding process results in the unsuccessful extraction of original secret data during extraction.
The proposed method provides improved hiding capacity and PSNR values in comparison with existing
image steganography methods based on PVD approach.
240
251
Avinash K.
Gulve
Madhuri S.
Joshi
PVD Steganography
LSB Substitution
Fall off boundary value problem
Information hiding
PSNR
Article.8.pdf
[
[1]
D. C. Wu, W. H. Tsai , A steganographic method for images by pixel-value differencing, PATTERN RECOGN LETT , 24 (2003), 1613-1626
##[2]
K. C. Chang, P. Huang, T. M. Tu, C. P. Chang , Adaptive Image Steganographic Scheme Based on Tri-way Pixel-Value Differencing, In proceedings of the IEEE International conference on Systems, Man and Cybernetics (ISIC), Montreal, October , 7-10 (2007), 1165-1168
##[3]
K. C. Chang, C. P. Chang, P. S. Huang, T. M. Tu , A Novel Image Steganographic Method Using Tri-way Pixel-Value Differencing, Journal of Multimedia, 3 (2008), 37-44
##[4]
X. Liao, Q. Y. Wen, J. Zhang , A steganographic method for digital images with four-pixel differencing and modified LSB substitution, Journal of Visual Communication and Image Representation, 22 (2011), 1-8
##[5]
M. B. Ould Medeni, El Mamoun Souidi, A Novel Steganographic Method for Gray-Level Images With four-pixel Differencing and LSB Substitution, In the proceedings of the IEEE International conference on Multimedia Computing and Systems (ICMCS), Ouarzazate, Morocco, 1-4. April 7-9, (2011)
##[6]
M. Khodaei, K. Faez , New adaptive steganographic method using least significant bit substitution and pixel-value differencing, IET Image Processing, 6 (2012), 677-686
##[7]
J. K. Mandal, D. Das , Steganography Using Adaptive Pixel Value Differencing(APVD) of Gray Images Through Exclusion of Overflow/Underflow, In the proceedings of the Second International Conference on Computer Science, Engineering and Applications (CCSEA-2012), Delhi, (2012), 93-102
##[8]
C. M. Wang, N. I. Wu, C. S. Tsai, M. S. Hwang , A high quality steganographic method with pixel-value differencing and modulus function, The Journal of Systems and Software , 81 (2008), 150-158
##[9]
A. K. Gulve, M. S. Joshi , A Secured Image Steganography Algorithm with Five Pixel Pair Differencing by Selecting the Common Pixel Randomly, In the proceedings of the 3rd International Conference on Computational Intelligence and Information Technology (CIIT), Mumbai, October 18-19 , (2013), 55-61
##[10]
A. K. Gulve, M. S. Joshi , An Image Steganography Algorithm with Five Pixel Pair Differencing and Grey Code, International Journal of Image, Graphics and Signal Processing, 6 (2014), 12-20
##[11]
J. Fridrich, M. Goljan, R. Du , Detecting LSB Steganography in Color, and Gray-Scale Images, IEEE Multimedia Magazine, 8 (2001), 22-28
##[12]
Z. Wang, A. C. Bovik , Universal Image Quality Index, IEEE SP letters , 9 (2002), 81-84
##[13]
J. Fridrich, V. Holub , Ensemble classifiers for steganalysis of digital media, IEEE Transactions on Information Forensics and Security , 7 (2012), 432-444
##[14]
T. Pevny, P. Bas, J. Fridrich , Steganalysis by Subtractive Pixel Adjacency Matrix, IEEE Trans. on Info. Forensics and Security , 5 (2010), 215-224
##[15]
T. Penvy, T. Filler, P. Bas , Using high dimensional image model to perform highly undetectable steganography, In the proceedings of 12th International conference on Information Hiding, October 01, Berlin (2010)
]