]>
2018
18
2
122
On \((\alpha, p)\)-convex contraction and asymptotic regularity
On \((\alpha, p)\)-convex contraction and asymptotic regularity
en
en
In this paper, we present the notions of \((\alpha, p)\)-convex
contraction (resp. \((\alpha, p)\)-contraction) and asymptotically
\(T^2\)-regular (resp. \((T, T^2)\)-regular) sequences, and prove fixed
point theorems in the setting of metric spaces.
132
145
M. S.
Khan
Y. Mahendra
Singh
Georgeta
Maniu
Mihai
Postolache
Approximate fixed point
fixed point
\((\alpha
p)\)-convex contraction
asymptotically regular sequence
asymptotically \(T\) (resp. \(T^2\) and \((T
T^2)\))-regular sequences
Article.1.pdf
[
[1]
M. A. Alghamdi, S. H. Alnafei, S. Radenović, N. Shahzad, Fixed point theorems for convex contraction mappings on cone metric spaces, Math. Comput. Modelling, 54 (2011), 2020-2026
##[2]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181
##[3]
M. Berinde, Approximate fixed point theorems, Stud. Univ. Babeş-Bolyai Math., 51 (2006), 11-25
##[4]
F. E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571-575
##[5]
H. W. Engl, Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers, Nonlinear Anal., 1 (1977), 495-501
##[6]
T. M. Gallagher, Fixed point results for a new mapping related to mean nonexpansive mappings, Adv. Oper. Theory, 2 (2017), 1-16
##[7]
V. Ghorbanian, S. Rezapour, N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl., 63 (2012), 1361-1368
##[8]
K. Goebel, M. Japón Pineda, A new type of nonexpansiveness, Proc. 8th Int. Conf. Fixed Point Theory Appl., Chiang Mai (2007)
##[9]
K. Goebel, B. Sims, Mean Lipschitzian mappings, Nonlinear analysis and optimization I, Nonlinear analysis, Contemp. Math., Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 513 (2010), 157-167
##[10]
V. I. Istrăţescu, Some fixed point theorems for convex contraction mappings and convex nonexpansive mappings, I. , , 1 (1981), 151-163
##[11]
M. S. Khan, P. K. Jhade, Theorems on fixed points for asymptotically regular sequences and maps in b-metric space, SQU J. Sci., 22 (2017), 48-52
##[12]
M. S. Khan, Y. M. Singh, G. Maniu, M. Postolache, On generalized convex contractions of type-2 in b-metric and 2-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2902-2913
##[13]
U. Kohlenbach, L. Leuştean, The approximate fixed point property in product spaces, Nonlinear Anal., 66 (2007), 806-818
##[14]
M. A. Miandaragh, M. Postolache, S. Rezapour, Approximate fixed points of generalized convex contractions, Fixed Point Theory Appl., 2013 (2013 ), 1-8
##[15]
R. Miculescu, A. Mihail, A generalization of Istrăţescu’s fixed point theorem for convex contractions, Fixed Point Theory, 18 (2017), 689-702
##[16]
S. Reich, A. J. Zaslavski, Genericity and porosity in fixed point theory: a survey of recent results, Fixed Point Theory Appl., 2015 (2015 ), 1-21
##[17]
S. Tijs, A. Torre, R. Brânzei, Approximate fixed point theorems, Miron Nicolescu (1903–1975) and Nicolae Ciorânescu(1903–1957), Libertas Math., 23 (2003), 35-39
]
R-robustly measure expansive homoclinic classes are hyperbolic
R-robustly measure expansive homoclinic classes are hyperbolic
en
en
Let \(f:M\to M\) be a diffeomorphism on a closed smooth \(n(n\geq
2)\)-dimensional manifold \(M\) and let \(p\) be a hyperbolic periodic
point of \(f\).
We show that if the homoclinic class \(H_f(p)\) is R-robustly measure expansive then it is hyperbolic.
146
153
Manseob
Lee
Expansive
measure expansive
local product structure
shadowing
hyperbolic
homoclinic class
generic
Article.2.pdf
[
[1]
A. Arbieto, Periodic orbits and expansiveness, Math. Z., 269 (2011), 801-807
##[2]
C. Bonatti, S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104
##[3]
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, Berlin (2008)
##[4]
M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Note in Math., Springer-Verlag, New York (1977)
##[5]
H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598
##[6]
N. Koo, K. Lee, M. Lee, Generic diffeomorphisms with measure expansive homoclinic classes, J. Difference Equ. Appl., 20 (2014), 228-236
##[7]
M. Lee, Measure expansiveness of the generic view point, , (preprint), -
##[8]
K. Lee, M. Lee, Hyperbolicity of \(C^1\)-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst., 27 (2010), 1133-1145
##[9]
K. Lee, M. Lee, Measure expansive homoclinic classes, Osaka J. Math., 53 (2016), 873-887
##[10]
X. Li, On R-robustly entropy-expansive diffeomorphisms, Bull. Braz. Math. Soc., 43 (2012), 73-98
##[11]
R. Mañé, Expansive diffeomorphisms, Lecture Notes in Math., Springer, Berlin (1975)
##[12]
R. Mañé, Contribution to stability conjecture, Topology, 17 (1978), 383-396
##[13]
C. Morales , A generalization of expansivity, Discrete Contin. Dyn. Syst., 32 (2012), 293-301
##[14]
C. A. Morales, V. F. Sirvent, Expansive measures, Instituto Nacional de Matemtica Pura e Aplicada (IMPA), Rio de Janeiro (2013)
##[15]
M. J. Pacifico, E. R. Pujals, M. Sambarino, J. L. Vieites, Robustly expansive codimension-one homoclinic classes are hyperbolic, Ergodic Theory Dynam. Systems, 29 (2009), 179-200
##[16]
M. J. Pacifico, E. R. Pujals, J. L. Vieites, Robustly expansive homoclinic classes, Ergodic Theory Dynam. Systems, 25 (2005), 271-300
##[17]
M. J. Pacificao, J. L. Vieites, On measure expansive diffeomorphisms, Proc. Amer. Math. Soc., 143 (2015), 811-819
##[18]
K. Sakai, \(C^1\)-stably shadowable chain components, Ergodic Theory Dynam. Systems, 28 (2008), 987-1029
##[19]
K. Sakai, N. Sumi, K. Yamamoto, Measure expansive diffeomorphisms, J. Math. Anal. Appl., 414 (2014), 546-552
##[20]
M. Sambarino, J. Vieitez, On \(C^1\)-persistently expansive homoclinic classes, Discrete Contin. Dynam. Syst., 14 (2006), 465-481
##[21]
M. Sambarino, J. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dynam. Syst., 24 (2009), 1325-1333
##[22]
W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774
##[23]
X. Wen, S. Gan, L. Wen, \(C^1\)-stably shadowable chain components are hyperbolic, J. Differential Equations, 246 (2009), 340-357
]
Dynamical analysis on prey refuge in a predator-prey model with square root functional response
Dynamical analysis on prey refuge in a predator-prey model with square root functional response
en
en
In this paper, we consider a predator-prey model with square root functional response and prey refuge. The study reveals that the dynamical behavior near the origin of the model is subtle and interesting. We also show that the model undergoes Transcritical bifurcation and Hopf bifurcation. Numerical simulations not only illustrate our results, but also exhibit richer dynamical behaviors of the model than those with Holling II type functional response. Taking prey refuge as control variable, it is feasible to decrease predation rate and then control predator density properly so as to avoid two of population extinction and promote coexistence.
154
162
Liujuan
Chen
Yiqin
Wang
Square root functional response
prey refuges
limit cycle
global stability
transcritical bifurcation
Article.3.pdf
[
[1]
V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. Real World Appl., 12 (2011), 2319-2338
##[2]
P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. RealWorld Appl., 13 (2012), 1837-1843
##[3]
L.-J. Chen, F.-D. Chen, Global analysis of a harvested predator-prey model incorporating a constant prey refuge, Int. J. Biomath., 3 (2010), 205-223
##[4]
L.-J. Chen, F.-D. Chen, L.-J. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 246-252
##[5]
F.-D. Chen, L.-J. Chen, X.-D. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge , Nonlinear Anal. Real World Appl., 10 (2009), 2905-2908
##[6]
E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Modell., 166 (2003), 135-146
##[7]
Y.-J. Huang, F.-D. Chen, Z. Li, Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672-683
##[8]
T.-W. Hwang, Uniqueness of the limit cycle for Gause-type predator-prey systems, J. Math. Anal. Appl., 238 (1999), 179-195
##[9]
L.-L. Ji, C.-Q. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 2285-2295
##[10]
T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681-691
##[11]
T. K. Kar, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl. Math., 185 (2006), 19-33
##[12]
W.-Y. Ko, K.-M. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550
##[13]
V. Křivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: the role of refuges, Theor. Popul. Biol., 53 (1998), 131-142
##[14]
Z.-H. Ma, W.-L. Li, Y. Zhao, W.-T. Wang, H. Zhang, Z.-Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges, Math. Biosci., 218 (2009), 73-79
##[15]
J. N. McNair, The effects of refuges on predator-prey interactions: a reconsideration, Theoret. Population Biol., 29 (1986), 38-63
##[16]
J. N. McNair, Stability effects of prey refuges with entry-exit dynamics, J. Theoret. Biol., 125 (1987), 449-464
]
Multi-valued tripled fixed point results via CLR property in metric spaces with application
Multi-valued tripled fixed point results via CLR property in metric spaces with application
en
en
In this work, using CLR property, tripled coincidence and
common fixed point theorems for hybrid pair of
mappings are studied. As an application, existence of solution to the system of integral equation is also discussed.
163
174
Muhammad
Shoaib
Muhammad
Sarwar
Yongjin
Li
Hybrid maps
tripled fixed point
CLR property
Article.4.pdf
[
[1]
A. A. N. Abdou, Common fixed point results for multi-valued mappings with some examples, J. Nonlinear Sci. Appl., 9 (2016), 787-798
##[2]
Y. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New results in operator theory and its applications, Oper. Theory Adv. Appl., Birkhäuser, Basel, 98 (1997), 7-22
##[3]
A. Amini-harandi, D. O’Regan, On coupled and tripled fixed point theory of multi-valued contraction mappings in partially ordered metric spaces, Commun. Appl. Anal., 19 (2015), 209-216
##[4]
H. Aydi, M. Abbas, Tripled coincidence and fixed point results in partial metric spaces, Appl. Gen. Topol., 13 (2012), 193-206
##[5]
V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889-4897
##[6]
B. Deshpande, C. Kothari, A. Handa, Common tripled fixed point theorems under weaker conditions, Int. J. Pure Appl. Math., 103 (2015), 1-17
##[7]
B. Deshpande, S. Sharma, A. Handa, Tripled fixed point theorem for hybrid pair of mappings under generalized nonlinear contraction, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 21 (2014), 23-38
##[8]
D. Doric, Common fixed point for generalized (\(\psi,\phi\))-weak contractions, Appl. Math. Lett., 22 (2009), 1896-1900
##[9]
P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008 ), 1-8
##[10]
T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393
##[11]
J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72 (2010), 1188-1197
##[12]
M. A. Khan, Sumitra, CLRg property for coupled fixed point theorems in fuzzy metric spaces, Int. J. Appl. Phys. Math., 2 (2012), 355-358
##[13]
V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349
##[14]
S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 20 (1969), 475-488
##[15]
K. P. R. Rao, G. N. V. Kishore, K. Tas, A unique common triple fixed point theorem for hybrid pair of maps, Abstr. Appl. Anal., 2012 (2012), 1-9
##[16]
K. P. R. Rao, K. V. Siva Parvathi, M. Imdad, hybrid coupled fixed point theorems for maps under (CLRg) property in fuzzy metric spaces, Novi Sad J. Math., (2015), 1-18
##[17]
K. P. R. Rao, A. Sombabu, M. Mustaq Ali, Common coupled fixed point theorems satisfying (CLRg) property in complex valued b-metric spaces, Bull. Int. Math. Virtual Inst., 6 (2016), 189-198
##[18]
B. E. Rhoades, Some theorems on weakly contractive maps, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4, Catania, (2000), Nonlinear Anal., 47 (2001), 2683-2693
##[19]
B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal., 1 (2010), 46-56
##[20]
W. Shatanawi, M. Postolache, Z. Mustafa, Tripled and coincidence fixed point theorems for contractive mappings satisfying \(\Phi\)-maps in partially ordered metric spaces, An. Ştiinţ. Univ. ”Ovidius” Constanţa Ser. Mat., 22 (2014), 179-203
##[21]
W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math., 2011 (2011 ), 1-14
##[22]
Q.-N. Zhang, Y.-S. Song, Fixed point theory for generalized \(\phi\)-weak contractions, Appl. Math. Lett., 22 (2009), 75-78
]
Solving fuzzy matrix games through a ranking value function method
Solving fuzzy matrix games through a ranking value function method
en
en
The objective of this paper is to establish the
bi-matrix games with crisp payoffs based on ranking value function method. We obtain that the equilibrium solution of the game model can be translated into the optimal solution of the non-linear programming problem. Finally, to illustrate the effectiveness and correctness of the obtained model, an example is provided.
175
183
Dong
Qiu
Yumei
Xing
Shuqiao
Chen
Fuzzy bi-matrix game
equilibrium solution
non-linear programming problem
Article.5.pdf
[
[1]
T. Başar, G. J. Olsder, Dynamic Noncooperative Game Theory, Academic press, London (1995)
##[2]
C. R. Bector, S. Chandra, Fuzzy mathematical programming and fuzzy matrix games, Springer, Germany (2005)
##[3]
D. Blackwell, An analog of the minimax theorem for vector payoff, Pacific J. Math., 6 (1956), 1-8
##[4]
Y. Chalco-Canoa, A. Rufián-Lizana, H. Román-Flores, R. Osuna-Gómez, A note on generalized convexity for fuzzy mappings through a linear ordering, Fuzzy Sets and Systems, 231 (2013), 70-83
##[5]
C. B. Das, S. K. Roy, Fuzzy based GA to multi-objective entropy bimatrix game, Opsearch, 50 (2013), 125-140
##[6]
A. DeLuca, S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Information and Control, 20 (1972), 301-312
##[7]
P. Diamond, P. Kloeden , Metric spaces of fuzzy sets, Fuzzy Sets and Systems, 35 (1990), 241-249
##[8]
D. J. Dubois, H. Prade, Fuzzy sets and systems-theory and application, Academic Press, New York (1980)
##[9]
W. Fei, D.-F. Li, Bilinear Programming Approach to Solve Interval Bimatrix Games in Tourism Planning Management, Int. J. Fuzzy Syst., 18 (2016), 504-510
##[10]
M. Hladík, Interval valued bimatrix games, Kybernetika, 46 (2010), 435-446
##[11]
M. Larbani, Solving bi-matrix games with fuzzy payoffs by introducing nature as a third player, Fuzzy Sets and Systems, 160 (2009), 657-666
##[12]
C.-L. Li, Characterization of the Equilibrium Strategy of Fuzzy Bimatrix Games Based on Fuzzy Variables, J. Appl. Math., 2012 (2012 ), 1-15
##[13]
D.-F. Li, Decision and Game Theory in Management with Intuitionistic Fuzzy Sets, Springer-verlag, Heidelberg (2014)
##[14]
L. Li, S. Liu, J. Zhang, On fuzzy generalized convex mappings and optimality conditions for fuzzy weakly univex mappings, Fuzzy Sets and Systems, 280 (2015), 107-132
##[15]
T. Maeda, Characterization of the equilibrium strategy of the bimatrix game with fuzzy payoff, J. Math. Anal. Appl., 251 (2000), 885-896
##[16]
O. L. Mangasarian, H. Stone, Two person non zero sum game and quadratic programming, J. Math. Anal. Appl., 9 (1964), 348-355
##[17]
J.-X. Nan, M.-J. Zhang, D.-F. Li, Intuitionistic fuzzy programming models for matrix games with payoffs of trapezoidal intuitionistic fuzzy numbers, Int. J. Fuzzy Syst., 16 (2014), 444-456
##[18]
P. K. Nayak, M. Pal, Bimatrix games with intiutionstic fuzzy goals, Iran. J. Fuzzy Syst., 7 (2010), 65-79
##[19]
M. Panigrahi, G. Panda, S. Nanda, Convex fuzzy mapping with differentiability and its application in fuzzy optimization, European J. Oper. Res., 185 (2008), 47-62
##[20]
S. K. Roy, Fuzzy programming approach to two-person multicriteria bimatrix games, J. Fuzzy Math., 15 (2007), 141-153
##[21]
S. K. Roy, M. P. Biswal, R. N. Tiwari, An approach to multi-objective bimatrix games for Nash equilibrium solutions, Ric. Oper., 30 (2001), 56-63
##[22]
Y. R. Syau, E. Stanley Lee, Fuzzy Weirstrass theorem and convex fuzzy mappings, Comput. Math. Appl., 51 (2006), 1741-1750
##[23]
Y. R. Syau, E. Stanley Lee, Preinvexity and \(\Phi\)-convexity of fuzzy mappings through a linear ordering, Comput. Math. Appl., 51 (2006), 405-418
##[24]
V. Vidyottama, S. Chandra, C. R. Bector, Bi-matrix game with fuzzy goals and fuzzy payoffs, Fuzzy Optim. Decis. Mak., 3 (2004), 327-344
##[25]
V. Vijay, A. Mehra, S. Chandra, C. R. Bector, Fuzzy matrix games via a fuzzy relation approach, Fuzzy Optim. Decis. Mak., 6 (2007), 299-314
##[26]
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353
##[27]
H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1 (1978), 45-55
]
Common fixed point theorems for non-self mappings of nonlinear contractive maps in convex metric spaces
Common fixed point theorems for non-self mappings of nonlinear contractive maps in convex metric spaces
en
en
In this paper, we introduce a class of nonlinear contractive
mappings in metric space. We also establish common fixed point
theorems for these pair of non-self mappings satisfying the
new contractive conditions in the convex metric space . An example
is given to validate our results. The results generalize and
extend some results in literature.
184
191
Kanayo Stella
Eke
Bijan
Davvaz
Jimevwo Godwin
Oghonyon
Convex metric space
nonlinear contractive mapping
non-self mapping
common fixed point
coincidentally commuting
Article.6.pdf
[
[1]
M. Abbas, J. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420
##[2]
T. Abdeljawad, E. Karapınar, K. Taş, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011), 1900-1904
##[3]
H. Akewe, G. A. Okeke, Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive -like operators, J. Fixed Point Theory Appl., 2015 (2015), 1-8
##[4]
N. A. Assad , On a fixed point theorem in Banach space, Tamkang J. Math., 7 (1976), 91-94
##[5]
N. A. Assad, W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43 (1972), 553-562
##[6]
H. Aydi, A. Felhi, E. Karapınar, On common best proximity points for generalized alpha-psi-proximal contraction, J. Nonlinear Sci. Appl., 9 (2016), 2658-2670
##[7]
H. Aydi, M. Jellahi, E. Karapinar, Common fixed points for generalized \(\alpha\)- implicit contractions in partial metric spaces: consequences and application, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, 109 (2015), 367-384
##[8]
L. B. Ćirić, Contractive-type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl., 317 (2006), 28-42
##[9]
L. Ćirić, V. Rakočević, S. Radenović, M. Rajović, R. Lazović, Common fixed point theorems for non-self mappings in metric spaces of hyperbolic type, J. Comput. Appl. Math. , 233 (2010), 2966-2974
##[10]
L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476
##[11]
M. Imdad, S. Kumar, Rhoades-type fixed-point theorems for a pair of nonself mappings, Comput. Math. Appl., 46 (2003), 919-927
##[12]
E. Karapınar, A note on common fixed point theorem in partial metric spaces, Miskolic Math. Notes, 12 (2011), 185-191
##[13]
W. A. Kirk, Krasnoselskii’s iteration process in hyperbolic space, Numer. Funct. Anal. Optim., 4 (1982), 371-381
##[14]
G. A. Okeke, M. Abbas, Convergence and almost sure T-stability for a random iterative sequence generated by a generalized random operator, J. Inequal. Appl., 2015 (2015 ), 1-11
##[15]
G. A. Okeke, J. K. Kim, Convergence and summable almost T-stability of the random Picard-Mann hybrid iterative process, J. Inequal. Appl., 2015 (2015 ), 1-14
##[16]
S. Radenović, B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., 57 (2009), 1701-1707
##[17]
B. E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon., 23 (1978), 457-459
##[18]
R. Sumitra, V. R. Uthariaraj, R. Hemavathy, P. Vijayaraju, Common fixed point theorem for non-self mappings satisfying generalized Ciric type contraction condition in cone metric space, J. Fixed Point Theory Appl., 2010 (2010 ), 1-17
##[19]
W. Takahashi, A convexity in metric spaces and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22 (1970), 142-149
]
Adaptive strategies for system of fuzzy differential equation: application of arms race model
Adaptive strategies for system of fuzzy differential equation: application of arms race model
en
en
The paper presents adaptive stratagems to scrutinize the system of first order fuzzy differential equations (SFDE) in two modes, fuzzy and in crisp sense. Its fuzzy solutions are carried out using two approaches, namely, Zadeh's extension principle and generalized Hukuhara derivative (gH-derivative). While, different defuzzification techniques; central of area method (COA), bisector of area method (BOA), largest of maxima (LOM), smallest of maxima (SOM), mean of maxima (MOM), regular weighted point method (RWPM), graded mean integration value (GMIV), and center of approximated interval (COAI), are employed to discuss the crisp solutions. Moreover, the arms race model (ARM), which have a significant implication in international military planning, are pragmatic examples of system of first order differential equations, but not studied in fuzzy sense, hitherto. Therefore, ARM is re-established and studied here with fuzzy numbers to estimate its uncertain parameters, as a practical utilization of SFDE. Additionally, an illustrative example of ARM is undertaken to clarify the appropriateness of the proposed approaches.
192
205
Sankar Prasad
Mondal
Najeeb Alam
Khan
Oyoon Abdul
Razzaq
Tapan Kumar
Roy
Fuzzy differential equation
defuzzification
Hukuhara derivative
extension principle
Article.7.pdf
[
[1]
T. Allahviranloo, Z. Gouyandeh, A. Armand, A. Hasanoglu, On fuzzy solutions for heat equation based on generalized Hukuhara differentiability, Fuzzy Sets and Systems, 265 (2015), 1-23
##[2]
L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., 128 (2000), 27-33
##[3]
B. Bede, I. J. Rudas, J. Fodor, Friction model by using fuzzy differential equations, Lecture Notes in Comput. Sci., 4529 (2007), 23-32
##[4]
B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141
##[5]
A. Bencsik, B. Bede, J. Tar, J. Fodor, Fuzzy differential equations in modeling hydraulic differential servo cylinders, Third Romanian-Hungarian joint symposium on applied computational intelligence (SACI), Timisoara, Romania (2006)
##[6]
J. J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000), 43-54
##[7]
J. Casasnovas, F. Rosselló , Averaging fuzzy biopolymers, Fuzzy Sets and Systems, 152 (2005), 139-158
##[8]
S. H. Chen, S. T. Wang, S. M. Chang, Some properties of graded mean integration representation of L-R type fuzzy numbers, Tamsui Oxf. J. Math. Sci., 22 (2006), 185-208
##[9]
G. L. Diniz, J. F. R. Fernandes, J. F. C. A. Meyer, L. C. Barros, A fuzzy Cauchy problem modelling the decay of the biochemical oxygen demand in water, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, BC, Canada, 1 (2001), 512-516
##[10]
M. S. El Naschie, From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold, Chaos Solitons Fractals, 25 (2005), 969-977
##[11]
O. S. Fard, An iterative scheme for the solution of generalized system of linear fuzzy differential equations, World Appl. Sci. J., 7 (2009), 1597-1604
##[12]
N. Gasilov, Ş. E. Amrahov, A. G. Fatullayev, A geometric approach to solve fuzzy linear systems of differential equations, Appl. Math. Inf. Sci., 5 (2011), 484-499
##[13]
W. W. Hill, Several sequential augmentations of Richardson’s arms race model, Math. Comput. Model., 16 (1992), 201-212
##[14]
E. Hüllermeier, An approach to modelling and simulation of uncertain dynamical systems, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, Fuzziness Knowledge-Based Systems, 5 (1997), 117-137
##[15]
N. A. Khan, O. A. Razzaq, A. Ara, F. Riaz, Numerical solution of system of fractional differential equations in imprecise environment, Numerical Simulation-From Brain Imaging to Turbulent Flow, InTech (2016)
##[16]
N. A. Khan, O. A. Razzaq, M. Ayyaz, On the solution of fuzzy differential equations by Fuzzy Sumudu Transform, Nonlinear Eng., 4 (2015), 49-60
##[17]
A. Khastan, I. Perfilieva, Z. Alijani, A new fuzzy approximation method to Cauchy problems by fuzzy transform, Fuzzy Sets and Systems, 288 (2016), 75-95
##[18]
M. J. McLean, An introduction to mathematical models in the social and life sciences, M. Olinick Addison-Wesley Inc., London, (1978), Appl. Math. Modell., 3 (1979), 238-239
##[19]
M. T. Mizukoshi, L. C. Barros, Y. Chalco-Cano, H. Román-Flores, R. C. Bassanezi , Fuzzy differential equations and the extension principle, Inform. Sci., 177 (2007), 3627-3635
##[20]
S. P. Mondal, T. K. Roy, First order linear non homogeneous ordinary differential equation in fuzzy environment, Math. Theory Model., 3 (2013), 85-95
##[21]
S. Naaz, A. Alam, R. Biswas, Effect of different defuzzification methods in a fuzzy based load balancing application, Int. J. Comput. Sci., 8 (2011), 261-267
##[22]
R. Saneifard, Another method for defuzzification based on regular weighted point, Int. J. Ind. Math., 4 (2011), 147-152
##[23]
R. Saneifard, R. Saneifard, A method for defuzzification based on centroid point, Turkish J. Fuzzy Sys., 2 (2011), 36-44
##[24]
H. Zarei, A. V. Kamyad, A. A. Heydari, Fuzzy modeling and control of HIV infection, Comput. Math. Methods Med., 2012 (2012 ), 1-17
##[25]
Y. Zhang, J.-H. He, S.-Q. Wang, P. Wang, A dye removal model with a fuzzy initial condition, Therm. Sci., 20 (2016), 867-870
]
Fuzzy fixed point results of generalized almost F-contraction
Fuzzy fixed point results of generalized almost F-contraction
en
en
The aim of this paper is to obtain some common \(\alpha \)-fuzzy fixed points
for fuzzy mappings under almost \(F\)-contraction in the setting of metric
space. In this way we generalize, unify, and complement fuzzy fixed point
results of literature. As an application, we derive some multivalued fixed
point theorems as a direct consequence of our main results. We also provide
a non trivial example to show the significance of the investigation of this
paper.
206
215
Abdullah Eqal
Al-Mazrooei
Jamshaid
Ahmad
\(\alpha \)-Fuzzy fixed points
\(F\)-contraction
multivalued mapping
metric space
Article.8.pdf
[
[1]
H. M. Abu-Donia, Common fixed point theorems for fuzzy mappings in metric space under \(\phi\)-contraction condition, Chaos Solitons Fractals, 34 (2007), 538-543
##[2]
H. Adibi, Y. J. Cho, D. O’Regan, R. Saadati, Common fixed point theorems in L-fuzzy metric spaces, Appl. Math. Comput., 182 (2006), 820-828
##[3]
J. Ahmad, A. Al-Rawashdeh, A. Azam, Fixed point results for \(\{\alpha,\xi\}\)-expansive locally contractive mappings, J. Inequal. Appl., 2014 (2014 ), 1-10
##[4]
J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015 ), 1-18
##[5]
A. Al-Rawashdeh, J. Ahmad, Common fixed point theorems for JS-contractions, Bull. Math. Anal. Appl., 8 (2016), 12-22
##[6]
I. Altun, G. Durmaz, G. Mınak, S. Romaguera, Multivalued almost F-contractions on complete metric spaces, Filomat, 30 (2016), 441-448
##[7]
I. Altun, G. Minak, H. Dağ, Multivalued F-contractions on complete metric spaces, J. Nonlinear Convex Anal., 16 (2015), 659-666
##[8]
S. C. Arora, V. Sharma, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, 110 (2000), 127-130
##[9]
Z. Aslam, J. Ahmad, N. Sultana, New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., 8 (2017), 1-12
##[10]
A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy \(\phi\)-contractive mappings, Math. Comput. Modelling, 52 (2010), 207-214
##[11]
A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Modelling, 49 (2009), 1331-1336
##[12]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181
##[13]
V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43-53
##[14]
V. Berinde, General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., 24 (2008), 10-19
##[15]
R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21 (1987), 53-58
##[16]
S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung, S. M. Kang, Coincidence point theorems and minimization theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 88 (1997), 119-127
##[17]
Y. J. Cho, N. Petrot, Existence theorems for fixed fuzzy points with closed \(\alpha\)-cut sets in complete metric spaces, Commun. Korean Math. Soc., 26 (2011), 115-124
##[18]
S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566-569
##[19]
A. Hussain, New approach of F-contraction involving fixed point on a closed ball, Turkish J. Anal. Number Theory, 4 (2016), 159-163
##[20]
N. Hussain, J. Ahmad, A. Azam, On Suzuki-Wardowski type fixed point theorems, J. Nonlinear Sci. Appl., 8 (2015), 1095-1111
##[21]
N. Hussain, A. E. Al-Mazrooei, J. Ahmad, Fixed point results for generalized \((\alpha-\eta)-\Theta\) contractions with applications, J. Nonlinear Sci. Appl., 10 (2017), 4197-4208
##[22]
S. U. Khan, M. Arshad, A. Hussain, M. Nazam, Two new types of fixed point theorems for F-contraction, J. Adv. Stud. Topol., 7 (2016), 251-260
##[23]
G. Minak, I. Altun, S. Romaguera, Recent developments about multivalued weakly Picard operators, Bull. Belg. Math. Soc. Simon Stevin, 22 (2015), 411-422
##[24]
S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-478
##[25]
D. Qiu, L. Shu, Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings, Inform. Sci., 178 (2008), 3595-3604
##[26]
R. A. Rashwan, M. A. Ahmed, Common fixed point theorems for fuzzy mappings , Arch. Math. (Brno) , 38 (2002), 219-226
##[27]
R. Saadati, S. M. Vaezpour, Y. J. Cho, Quicksort algorithm: application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl. Math., 228 (2009), 219-225
##[28]
N. A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl., 2013 (2013 ), 1-13
##[29]
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-6
##[30]
S.-S. Zhang, Fixed point theorems for fuzzy mappings, II, (Chinese) ; translated from Appl. Math. Mech., 7 (1986), 133–138, Appl. Math. Mech. (English Ed.), 7 (1986), 147-152
]
Common fixed point theorems for two pairs of self-mappings in partial metric space using \(C\)-class functions on \((\psi,\varphi)\)-contractive condition
Common fixed point theorems for two pairs of self-mappings in partial metric space using \(C\)-class functions on \((\psi,\varphi)\)-contractive condition
en
en
The purpose of this paper is to introduce common fixed point results for two pairs of weakly compatible self-mappings in partial metric space using \(C\)-class functions on \((\psi,\varphi)\)-contractive condition. Example and application on integral equations are presented to illustrate the main result. Our results extend and generalize well know results in the literature.
216
231
Zead
Mustafa
M. M. M.
Jaradat
Arslan
Ansari
Feng
Gu
Hui-hui
Zheng
Stojan
Radenović
M. S.
Bataineh
(\(\psi
\varphi\))-Contractive mapping
common fixed point
coincidence point
partial metric space
weakly compatible mappings
\(C\)-class functions
integral equations
Article.9.pdf
[
[1]
T. Abdeljawad, E. Karapınar, K. Taş, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011), 1900-1904
##[2]
Abdullah, M. Sarwar, Z. Mustafa, M. M. M. Jaradat, Common fixed points of (\(\phi,\psi\))-contraction on G-metric space using E.A property, J. Math. Anal., 8 (2017), 136-146
##[3]
A. H. Ansari, Note on “\(\varphi-\psi\)-contractive type mappings and related fixed point, 2nd Regional Conf. Math. Appl., PNU, Iran, (2014), 377-380
##[4]
H. Aydi, Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, J. Nonlinear Anal. Optim., 2 (2011), 269-284
##[5]
A. Bejenaru, A. Pitea, Fixed point and best proximity point theorems on partial metric spaces, J. Math. Anal., 7 (2016), 25-44
##[6]
L. Ćirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398-2406
##[7]
A. Erduran, Z. Kadelburg, H. K. Nashine, C. Vetro, A fixed point theorem for (\(\phi, L\))-weak contraction mappings on a partial metric space, J. Nonlinear Sci. Appl., 7 (2014), 196-204
##[8]
D. Ilić, V. Pavlović , V. Rakočević, Some new extensions of Banach’s contraction principle to partial metric space, Appl. Math. Lett. , 24 (2011), 1326-1330
##[9]
M. M. M. Jaradat, Z. Mustafa, A. H. Ansari, S. Chandok, Ć. Dolićanin, Some approximate fixed point results and application on graph theory for partial (h, F)-generalized convex contraction mappings with special class of functions on complete metric space, J. Nonlinear Sci. Appl., 10 (2017), 1695-1708
##[10]
M. M. M. Jaradat, Z. Mustafa, A. H. Ansari, P. S. Kumari, D. Dolicanin-Djekic, H. M. Jaradat, Some fixed point results for \(F_{\alpha,\omega \varphi}\)-generalized cyclic contractions on metric-like space with applications to graphs and integral equations, J. Math. Anal., 8 (2017), 28-45
##[11]
M. M. M. Jaradat, Z. Mustafa, S. U. Khan, M. Arshad, J. Ahmad, Some fixed point results on G-metric and \(G_b\)-metric spaces, Demonstr. Math., 50 (2017), 190-207
##[12]
A. Kaewcharoen, T. Yuying, Unique common fixed point theorems on partial metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 90-101
##[13]
E. Karapınar, Ćirić types nonunique fixed point theorems on partial metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 74-83
##[14]
M. S. Khan, M. Swalesh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9
##[15]
V. La Rosa, P. Vetro, Fixed points for Geraghty-contractions in partial metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 1-10
##[16]
S. G. Matthews, Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, 728 (1994), 183-197
##[17]
Z. Mustafa, Common fixed points of weakly compatible mappings in G-metric spaces, Appl. Math. Sci. (Ruse), 6 (2012), 4589-4600
##[18]
Z. Mustafa, T. V. An, N. V. Dung, Two fixed point theorems for maps on incomplete G-metric spaces, Appl. Math. Sci. (Ruse), 7 (2013), 2271-2281
##[19]
Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad, M. M. M. Jaradat, Common fixed points for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl., 10 (2017), 2550-2564
##[20]
Z. Mustafa, H. Aydi, E. Karapınar, On common fixed points in G-metric spaces using (E.A) property, Comput. Math. Appl., 64 (2012), 1944-1956
##[21]
Z. Mustafa, M. M. M. Jaradat, A. H. Ansari, B. Z. Popović, H. Jaradat, C-class functions with new approach on coincidence point results for generalized \((\psi,\varphi)\)-weakly contractions in ordered b-metric spaces, SpringerPlus, 5 (2016), 1-18
##[22]
Z. Mustafa, M. M. M. Jaradat, H. M. Jaradat, Some common fixed point results of graphs on b-metric space, J. Nonlinear Sci. Appl., 9 (2016), 4838-4851
##[23]
Z. Mustafa, M. M. M. Jaradat, H. M. Jaradat, A remarks on the paper ”Some fixed point theorems for generalized contractive mappings in complete metric spaces”, J. Math. Anal., 8 (2017), 17-22
##[24]
Z. Mustafa, M. M. M. Jaradat, E. Karapınar, A new fixed point result via property P with an application, J. Nonlinear Sci. Appl., 10 (2017), 2066-2078
##[25]
Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013 ), 1-26
##[26]
Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, J. Inequal. Appl., 2014 (2014 ), 1-14
##[27]
H. K. Nashine, Z. Kadelburg, S. Radenović, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling, 57 (2013), 2355-2365
##[28]
S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36 (2004), 17-26
##[29]
S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010 ), 1-6
##[30]
H.-H. Zheng, F. Gu, Some results of common fixed point for four self-maps satisfying a new \(\Psi\)-contractive condition in partial metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 2258-2272
]
Bitopological spaces on undirected graphs
Bitopological spaces on undirected graphs
en
en
The aim of this article is to associate a bitopological space with every locally finite graph G (a graph in which every vertex is adjacent with finite number of edges). Then some properties of this bitopological space were investigated. After that, connectedness and dense subsets were discussed. Giving a fundamental step toward studying some properties of locally finite graphs by their corresponding bitopological spaces is our motivation.
232
241
Khalid Abdulkalek
Abdu
Adem
Kilicman
Locally finite graph
undirected graphs
bitopological spaces
Article.10.pdf
[
[1]
E. V. Baby Girija, R. Pilakkat, Bitopological spaces associated with digraphs, South Asian J. Math., 3 (2013), 56-66
##[2]
A. Bretto, Digital topologies on graphs, Springer-Verlag, Berlin (2007)
##[3]
B. P. Dvalishvili, Bitopological spaces: theory, relations with generalized algebraic structures, and applications, Elsevier, Amesterdam (2005)
##[4]
S. M. Jafarian Amiri, A. Jafarzadeh, H. Khatibzadeh, An Alexandroff topology on graphs, Bull. Iranian Math. Soc., 39 (2013), 647-662
##[5]
A. Kilicman, K. Abdulkalek, Topological spaces associated with simple graphs, , (submitted), -
##[6]
J. M. Moller , General topology, Matematisk Institut, Kobenhavn (2007)
##[7]
M. J. Saegrove , On bitopological spaces, Thesis (Ph.D.), Iowa State University, ProQuest LLC (1971)
##[8]
S. Saha Ray, Graph theory with algorithms and its applications, Springer Publishers, New Delhi (2013)
##[9]
C. Vasudev, Graph theory with applications, New age international, New Delhi (2006)
]
On a subclass of meromorphically starlike functions with two fixed positive coefficients
On a subclass of meromorphically starlike functions with two fixed positive coefficients
en
en
In this paper we obtain coefficient inequalities for the subclass of meromorphic univalent functions with two fixed positive coefficients defined in punctured unit disc. We have studied basic properties such as coefficient estimates, radius of convexity, and closure theorems.
242
247
Danyal
Soybaş
Santosh
Joshi
Haridas
Pawar
Univalent function
fixed coefficients
distortion theorem
Article.11.pdf
[
[1]
M. K. Aouf, S. B. Joshi, On certain subclasses of meromorphically starlike functions with positive coefficients, Soochow J. Math., 24 (1998), 79-90
##[2]
N. Magesh, N. B. Gatti, S. Mayilvaganan, On Certain Subclasses of Meromorphic Functions with Positive and Fixed Second Coefficients Involving the Liu-Srivastava Linear Operator, ISRN Math. Anal., 2012 (2012 ), 1-11
##[3]
H. Silverman, E. M. Silvia, Fixed coefficients for subclasses of starlike functions, Houston J. Math., 7 (1981), 129-136
##[4]
B. A. Uralegaddi, Meromorphically starlike functions with positive and fixed second coefficients, Kyungpook Math. J., 29 (1989), 64-68
]
Bounded and sequential \(\sigma\)-approximate amenability of Banach algebras
Bounded and sequential \(\sigma\)-approximate amenability of Banach algebras
en
en
In this paper, we study the notions of bounded
\(\sigma\)-approximate amenability and sequential
\(\sigma\)-approximate
amenability for Banach algebras, where \(\sigma\) is a continuous homomorphism of the corresponding Banach algebra.
Also, we discuss some hereditary properties of these concepts.
248
254
Mohammad
Abolghasemi
Mohsen
Amini Khoei
Banach algebra
\(\sigma\)-derivation
bounded \(\sigma\)-approximately inner
bounded \(\sigma\)-approximate amenability
sequential \(\sigma\)-approximate amenability
Article.12.pdf
[
[1]
F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York (1973)
##[2]
J. B. Conway, A course in functional analysis, Springer, New York (2013)
##[3]
F. Ghahramani, R. J. Loy, Generalized notions of amenability, J. Funct. Anal., 208 (2004), 229-260
##[4]
F. Ghahramani, R. J. Loy, Y. Zhang, Generalized notions of amenability II, J. Funct. Anal. , 254 (2008), 1776-1810
##[5]
F. Gourdeau, Amenability of Lipschitz algebra, Math. Proc. Combridge Philos. Soc., 112 (1992), 581-588
##[6]
B. E. Johnson, Cohomology in Banach algebras, American Mathematical Society, Providence (1972)
##[7]
M. S. Moslehian, A. N. Motlagh, Some notes on \((\sigma,\tau)\)-amenability of Banach algebras, Stud. Univ. Babeş-Bolyai Math. , 53 (2008), 57-68
]