]>
2019
19
4
82
RETRACTED: An extension of the optimal homotopy asymptotic method with applications to nonlinear coupled partial differential equations
RETRACTED: An extension of the optimal homotopy asymptotic method with applications to nonlinear coupled partial differential equations
en
en
This article has been retracted: please see ISRP Policy on Article Withdrawal.
This article has been retracted at the request of the Editor-in-Chief.
In summary: the name of one author was removed during the submission process.
The editors, therefore, feel that the findings of the manuscript cannot be relied upon.
In this paper, we applied an extension of the optimal homotopy asymptotic method (EOHAM) for the approximate solution of coupled partial differential equations (PDEs). The obtained results are compared with other results for its efficiency. The order of convergence and residuals are plotted.
218
229
Mehreen
Fiza
Department of Mathematics
Abdul Wali Khan University
Pakistan
Farkhanda
Chohan
Department of Information Technology
Burraimi University College Burraimi
Oman
Hakeem
Ullah
Department of Mathematics
Abdul Wali Khan University
Pakistan
hakeemullah1@gmail.com
Saeed
Islam
Department of Mathematics
Abdul Wali Khan University
Pakistan
Samia
Bushnaq
Department of Basic Sciences, King Abdullah II Faculty of Engineering
Princess Sumaya University for Technology
Jordan
EOHAM
HPM
exact
coupled PDEs
Article.1.pdf
[
[1]
Y. Chen, H. L. An, Homotopy Perturbation method for a type of nonlinear coupled equation with parameters derivatives, Appl. Math. Comput., 204 (2008), 764-772
##[2]
S. H. Chowdhury, A comparison between the Extended homotopy perturbation method and adomian decomposition method for solving nonlinear heat transfer equations, J. Appl. Sci., 11 (2011), 1416-1428
##[3]
L. C. Chun, Fourier series based variational iteration method for a reliable treatment of heat equations with variable coefficients, Int. J. Non-linr. Sci. Num. Simu., 10 (2007), 1383-1388
##[4]
J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell Publishing Co. Ginn and Co., Waltham (1968)
##[5]
D. D. Ganji, The application of He’s homotopy perturbation method to nonlinear equation arising in heat transfer, Phys. Lett. A, 355 (2006), 337-341
##[6]
N. Herisanu, V. Marinca, Explicit analytical approximation to large amplitude nonlinear osciallation of a uniform contilaver beam carrying an intermediate lumped mass and rotary inertia, Meccanica, 45 (2010), 847-855
##[7]
S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, Shanghai (1992)
##[8]
V. Marinca, N. Herişanu, C. Bota, B. Marinca, An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl. Math. Lett., 22 (2009), 245-251
##[9]
R. E. O'Malley, Introduction to Singular Perturbation, Academic Press, New York-London (1974)
##[10]
H. Ullah, S. Islam, M. Fiza, The optimal homotopy asymptotic method with application to Inhomogeneous nonlinear wave equations, Sci. Int., 26 (2014), 1907-1913
##[11]
H. Ullah, S. Islam, M. Fiza, Analytical Solution for Three-Dimensional Problem of Condensation Film on Inclined Rotating Disk by Extended Optimal Homotopy Asymptotic Method, Iran. J. Sci. Tech. Mech. Eng., 40 (2016), 265-273
##[12]
H. Ullah, S. Islam, M. Idrees, M. Arif, Solution of boundary layer problem with heat transfer by optimal homotopy asymptotic method, Abstr. Appl. Anal., 2013 (2013), 1-10
##[13]
H. Ullah, S. Islam, M. Idrees, M. Fiza, Solution of the differential-difference equations by optimal homotopy asymptotic method, Abstr. Appl. Anal., 2014 (2014), 1-7
##[14]
H. Ullah, S. Islam S, M. Idrees, R. Nawaz, Application of Optimal Homotopy Asymptotic Method to Doubly Wave Solutions of the Coupled Drinfel'd-Sokolov-Wilson Equations, Math. Probl. Eng., 2013 (2013), 1-8
##[15]
H. Ullah, S. Islam, I. Khan, L. C. C. Dennis, T. N. Abdelhameed, I. Khan, M. Fiza, Approximate solution of two-dimensional nonlinear wave equation by optimal homotopy asymptotic method, Math. Probl. Eng., 2015 (2015), 1-7
##[16]
H. Ullah, S. Islam, I. Khan, S. Shafie, M. Fiza, Formulation and Applications of Optimal Homotopy Asymptotic Method to Coupled Differential-Difference Equations, PlosOne, 2015 (2015), 1-14
##[17]
H. Yaghoobi, M. Tirabi, The application of differential transformation method to nonlinear equation arising in heat transfer, Int. Comm. Heat Mass Transfer, 38 (2011), 815-820
]
Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for \(p\)-convex functions via new fractional conformable integral operators
Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for \(p\)-convex functions via new fractional conformable integral operators
en
en
In this paper, we obtained the Hermite-Hadamard and
Hermite-Hadamard-Fejer type inequalities for \(p\)-convex functions
via new fractional conformable integral operators. We also gave some
new Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities
for convex functions and harmonically convex functions via new
fractional conformable integral operators.
230
240
Naila
Mehreen
School of Natural Sciences
National University of Sciences and Technology
Pakistan
nailamehreen@gmail.com
Matloob
Anwar
School of Natural Sciences
National University of Sciences and Technology
Pakistan
Hermite-Hadamard inequalities
Hermite-Hadamard-Fejer inequalities
Riemann-Liouville fractional integral
fractional conformable integral operators
convex functions
\(p\)-convex functions
harmonically convex functions
Article.2.pdf
[
[1]
M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Inequalities via harmonic convex functions: Conformable fractional calculus approach, J. Math. Inequal., 12 (2008), 143-153
##[2]
F. Chen, Extension of the Hermite-Hadamard inequality for harmonicaly convex functions via fractional integrals, Appl. Math. Comut., 268 (2015), 121-128
##[3]
H. Chen, U. N. Katugampola, Katugampola, Hermite--Hadamard and Hermite--Hadamard--Fejer type inequalities for generalizes fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291
##[4]
L. Fejer, Über die Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss., 24 (1906), 369-390
##[5]
J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215
##[6]
I. Işcan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, arXiv, 2014 (2014), 1-10
##[7]
I. Işcan, Hermite-Hadamard type inequalities for $p$-convex functions, Int. J. Anal. Appl., 11 (2016), 137-145
##[8]
I. Işcan, S. H. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237-244
##[9]
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 1-16
##[10]
U. N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15
##[11]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam (2006)
##[12]
M. Kunt, I. Işcan, Hermite-Hadamard-Fejér type inequalities for $p$-convex functions, Arab. J. Math. Sci., 23 (2017), 215-230
##[13]
M. Kunt, I. Işcan, Hermite-Hadamard-Fejér type inequalities for $p$-convex functions via fractional integrals, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 2079-2089
##[14]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon (1993)
##[15]
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequlities for fractional integrals and related fractional inequalitis, Math. Comput. Modelling, 57 (2013), 2403-2407
##[16]
E. Set, A. O. Akdemir, I. Mumcu, The Hermite--Hadamard's inequality and its extentions for conformable fractioanal integrals of any order $\alpha>0$, preprint, 2016 (2016), 1-13
##[17]
E. Set, J. Choi, A. Gözpınar, Hermite-Hadamard type inequalities for new fractional conformable integral operators, preprint, 2018 (2018), 1-7
##[18]
E. Set, M. E. Özdemir, S. S. Dragomir, On Hadamard-type inequalities involving seversl kinds of convexity, J. Inequal. Appl., 2010 (2010), 1-12
##[19]
E. Set, M. Z. Sarikaya, A. Gözpınarc, Some Hermite--Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., 26 (2016), 221-229
##[20]
E. Set, M. Z. Sarikaya, M. E. Özdemir, H. Yaldirm, The Hermite--Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2014), 69-83
##[21]
G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim (Cluj-Napoca, Romania), 1985 (1985), 329-338
]
Geometric meaning of conformable derivative via fractional cords
Geometric meaning of conformable derivative via fractional cords
en
en
In this paper, we answer the question
that many researchers did ask us about: "what is the geometrical
meaning of the conformable derivative?". We answer the question
using the concept of fractional cords. Fractional orthogonal
trajectories are also introduced. Some examples illustrating the
concepts of fractional cords and fractional orthogonal trajectories
are given.
241
245
Roshdi
Khalil
Department of Mathematics
The University of Jordan
Jordan
roshdi@ju.edu.jo
Mohammed
AL Horani
Department of Mathematics
The University of Jordan
Jordan
horani@ju.edu.jo
Mamon
Abu Hammad
Department of Mathematics
Zaytoonah University
Jordan
m.abuhammad@zuj.edu.jo
Fractional derivatives
fractional cords
orthogonal fractional trajectory
Article.3.pdf
[
[1]
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66
##[2]
M. Abu Hammad, R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 13 (2014), 177-183
##[3]
M. Abu Hammad, R. Khalil, Conformable fractional heat differential equation, Int. J. Pure. Appl. Math., 94 (2014), 215-221
##[4]
I. Abu Hammad, R. Khalil, Fractional fourier series with applications, Amer. J. Comput. Appl. Math., 4 (2014), 187-191
##[5]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70
##[6]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
]
Straddles on ternary semigroups
Straddles on ternary semigroups
en
en
A ternary semigroup is a nonempty set with a ternary operation satisfy the associative law. In this paper, we define straddles on ternary semigroups and investigate some properties of straddles of ternary semigroups.
246
250
Phoschanun
Ratanaburee
Department of Mathematics and Statistics, Faculty of Science
Prince of Songkla University
Thailand
Thananya
Kaewnoi
Department of Mathematics and Statistics, Faculty of Science
Prince of Songkla University
Thailand
Ronnason
Chinram
Department of Mathematics and Statistics, Faculty of Science
Centre of Excellence in Mathematics
Prince of Songkla University
CHE
Thailand
Thailand
ronnason.c@psu.ac.th
Straddles
ternary semigroups
commutative elements
homomorphisms
Article.4.pdf
[
[1]
M. Y. Abbasi, S. A. Khan, On some generalized ideals in ternary semigroups, Quasigroups Related Systems, 25 (2017), 181-188
##[2]
M. A. Ansari, N. Yaqoob, T-rough ideals in ternary semigroups, Int. J. Pure Appl. Math., 86 (2013), 411-424
##[3]
P. Bindu, S. Yella, M. Rao Dasari, $T$-systems in ternary semigroups, Ital. J. Pure Appl. Math., 34 (2015), 221-224
##[4]
P. Choosuwan, R. Chinram, A study on quasi-ideals in ternary semigroups, Int. J. Pure Appl. Math., 77 (2012), 639-647
##[5]
V. N. Dixit, S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Internat. J. Math. Math. Sci., 18 (1995), 501-508
##[6]
S. P. Franklin, J. W. Lindsay, Straddles on semigroups, Math. Mag., 34 (1960/61), 269-270
##[7]
A. Iampan, Some properties of ideal extensions in ternary semigroups, Iran. J. Math. Sci. Inform., 8 (2013), 67-74
##[8]
D. H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math., 54 (1932), 329-338
##[9]
J. Łoś, On the extending of models $(I)^*$, Fund. Math., 42 (1955), 38-54
##[10]
P. Petchkhaew, R. Chinram, Fuzzy, rough and rough fuzzy ideals in ternary semigroups, Int. J. Pure Appl. Math., 56 (2009), 21-36
##[11]
A. M. Rezvi, J. Mehmood, On prime fuzzy bi-ideals in ternary semigroups, Mat. Vesnik, 64 (2012), 79-96
##[12]
S. Saelee, R. Chinram, A study on rough, fuzzy and rough fuzzy bi-ideals of ternary semigroups, IAENG Int. J. Appl. Math., 41 (2011), 172-176
##[13]
M. L. Santiago, S. Sri Bala, Ternary semigroups, Semigroup Forum, 81 (2010), 380-388
##[14]
F. M. Sioson, Ideal theory in ternary semigroups, Math. Japon., 10 (1965), 63-84
##[15]
S. Suebsung, R. Chinram, Interval valued fuzzy ideal extensions of ternary semigroups, Int. J. Math. Comput. Sci., 13 (2018), 15-27
##[16]
B. Thongkam, T. Changphas, On two-sided bases of ternary semigroups, Quasigroups Related Systems, 23 (2015), 319-324
##[17]
N. Yaqoob, M. Khan, M. Akram, A. Khan, Interval valued intuitionistic $(\overline{s}, \overline{t})$-fuzzy ideals of ternary semigroups, Indian J. Sci. Technol., 6 (2013), 5418-5428
]
A note on likelihood ratio ordering between parallel systems with two exponential components
A note on likelihood ratio ordering between parallel systems with two exponential components
en
en
With the aid of computer programming, we obtain a result on stochastic comparison of the lifetime of two parallel systems with two exponential components in terms of likelihood ratio ordering. This result reveals a more comprehensive picture on stochastic ordering between parallel systems and
thus provides a relatively satisfied answer to an open problem raised in [N. Balakrishnan, P. Zhao, Probab. Engrg. Inform. Sci., \(\bf 27\) (2013), 403--443].
251
257
Emanuel
Emanouilidis
School of Computer Science
Kean University
USA
eemanoui@kean.edu
Jiantian
Wang
School of Mathematical Science
Kean University
USA
jwang@kean.edu
Parallel system
stochastic comparison
likelihood ratio order
Article.5.pdf
[
[1]
N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: a review with an emphasis of some recent developments, Probab. Engrg. Inform. Sci., 27 (2013), 403-443
##[2]
P. J. Boland, E. El-Neweihi, F. Proschan, Applications of hazard rate ordering in reliability and order statistics, J. Appl. Probab., 31 (1994), 180-192
##[3]
R. Dykstra, S. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, J. Statist. Plann. Inference, 65 (1997), 203-211
##[4]
B. Khaledi, S. C. Kochar, Stochastic orderings among order statistics and sample spacings, in: Uncertainty and optimality, 2002 (2002), 167-203
##[5]
S. Kochar, J. Rojo, Some new results on stochastic comparisons of spacings from heterogeneous exponential distributions, J. Multivariate Anal., 59 (1996), 272-281
##[6]
S. Kochar, M. C. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probab. Engrg. Inform. Sci., 21 (2007), 597-609
##[7]
H. Laniado, R. E. Lillo, Allocation policies of redundancies in two-parallel–series and two-series–parallel systems, IEEE Trans. Reliab., 63 (2014), 223-229
##[8]
A. M. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, John Wiley & Sons, Chichester (2002)
##[9]
M. Shaked, J. G. Shanthikumar, Stochastic Orders, Springer, New York (2007)
##[10]
R. F. Yan, G. F. Da, P. Zhao, Further Results for Parallel Systems with Two Heterogeneous Exponential Components, Statistics, 47 (2013), 1128-1140
##[11]
P. Zhao, N. Balakrishnan, Some characterization results for parallel systems with two heterogeneous exponential components, Statistics, 45 (2011), 593-604
]
A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology
A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology
en
en
In this study, we have explored the approximate solution of \(2^{nd}\) order singular boundary value problems (SBVP's) using extended cubic B-spline (ECBS) collocation approach. The accuracy of the numerical algorithm has been enhanced by means of a novel ECBS approximation for $2^{nd}$ order derivative. To endorse our claim, few test examples have been considered and the experimental results are compared with the already existing methods. It is observed that the proposed technique is more accurate and efficient in comparison to the existing techniques on the topic.
258
267
Imtiaz
Wasim
Department of Mathematics
University of Sargodha
Pakistan
Muhammad
Abbas
Department of Mathematics
University of Sargodha
Pakistan
Muhammad Kashif
Iqbal
Department of Mathematics,
Government College University
Pakistan
kashifiqbal@gcuf.edu.pk
Singular boundary value problems
extended B-spline functions
quasi-linearization technique
extended B-spline collocation method
Article.6.pdf
[
[1]
M. Abbas, A. A. Majid, A. I. M. Ismail, A. Rashid, The application of cubic trigonometric B-spline to the numerical solution of the hyperbolic problems, Appl. Math. Comput., 239 (2014), 74-88
##[2]
M. Abukhaled, S. A. Khuri, A. Sayfy, A numerical approach for solving a class of singular boundary value problems arising in physiology, Int. J. Numer. Anal. Model., 8 (2011), 353-363
##[3]
E. Babolian, A. Iftikhari, A. Saadarmandi, A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems, Comput. Appl. Math., 34 (2015), 45-63
##[4]
N. Caglar, H. Caglar, B-spline solution of singular boundary value problems, Appl. Math. Comput., 182 (2006), 1509-1513
##[5]
Z. D. Cen, Numerical study for a class of singular two-point boundary value problems using Green’s functions, Appl. Math. Comput., 183 (2006), 10-16
##[6]
M. M. Chawala, R. Subramanian, H. L. Sathi, A fourth order method for a singular two-point boundary value problem, BIT Numer. Math., 28 (1988), 88-97
##[7]
U. Flesch, The distribution of heat sources in the human head: a theoretical consideration, J. Theor. Biol., 54 (1975), 285-287
##[8]
D. J. Fyfe, The use of cubic splines in the solution of two-point boundary value problems, Comput. J., 12 (1969/70), 188-192
##[9]
J. B. Garner, R. Shivaji, Diffusion problems with a mixed nonlinear boundary condition, J. Math. Anal. Appl., 148 (1990), 422-430
##[10]
J. Goh, A. A. Majid, A. I. M. Ismail, Extended cubic uniform B-spline for a class of singular boundary value problems, Sci. Asia, 37 (2011), 79-82
##[11]
J. Goh, A. A. Majid, A. I. M. Ismail, A quartic B-spline for second-order singular boundary value problems, Comput. Math. Appl., 64 (2012), 115-120
##[12]
M. K. Iqbal, M. Abbas, N. Khalid, New Cubic B-spline Approximation for Solving Non-linear Singular Boundary Value Problems Arising in Physiology, Comm. Math. Appl., 9 (2018), 377-392
##[13]
M. K. Iqbal, M. Abbas, I. Wasim, New cubic B-spline approximation for solving third order Emden–Flower type equations, Appl. Math. Comput., 331 (2018), 319-333
##[14]
M. K. Iqbal, M. Abbas, B. Zafar, New Quartic B-Spline Approximation for Numerical Solution of Third Order Singular Boundary Value Problems, Punjab. Univ. J. Math., 51 (2019), 43-59
##[15]
S. A. Khuri, A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comp. Modelling, 52 (2010), 626-636
##[16]
M. Kumar, Y. Gupta, Methods for solving singular boundary value problems using splines: a review, J. Appl. Math. Comput., 32 (2010), 265-278
##[17]
F. G. Lang, X. P. Xu, A new cubic B-spline method for approximating the solution of a class of nonlinear second-order boundary value problem with two dependent variables, Sci. Asia, 40 (2014), 444-450
##[18]
P. M. Lima, M. P. Carpentier, Iterative methods for a singular boundary-value problem, J. Comput. Appl. Math., 111 (1999), 173-186
##[19]
S. H. Lin, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics, J. Theor. Biol., 60 (1976), 449-457
##[20]
D. L. S. McElwain, A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics, J. Theor. Biol., 71 (1978), 255-263
##[21]
M. Mohsenyzadeh, K. Maleknejad, R. Ezzati, A numerical approach for the solution of a class of singular boundary value problems arising in physiology, Adv. Difference Equ., 2015 (2015), 1-10
##[22]
R. K. Pandey, A. K. Singh, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 166 (2004), 553-564
##[23]
K. Parand, M. Dehghan, A. Z. Rezaei, S. M. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane--Emden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Comm., 181 (2010), 1096-1108
##[24]
J. Rashidinia, R. Mohammadi, R. Jalilian, The numerical solution of non-linear singular boundary value problems arising in physiology, Appl. Math. Comput., 185 (2007), 360-367
##[25]
A. S. V. Ravi Kanth, Cubic spline polynomial for non-linear singular two-point boundary value problems, Appl. Math. Comput., 189 (2007), 2017-2022
##[26]
A. S. V. Ravi Kanth, K. Aruna, He's variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 60 (2010), 821-829
##[27]
R. D. Russell, L. F. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal., 12 (1975), 13-36
##[28]
L. F. Shampine, Singular boundary value problems for ODEs, Appl. Math. Comput., 138 (2003), 99-112
##[29]
S. Sharifi, J. Rashidinia, Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 281 (2016), 28-38
##[30]
R. Singh, J. Kumar, An efficient numerical technique for the solution of nonlinear singular boundary value problems, Comput. Phys. Commun., 185 (2014), 1282-1289
##[31]
R. Singh, A.-M. Wazwaz, J. Kumar, An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models, Int. J. Comput. Math., 93 (2016), 1330-1346
##[32]
W. Y. Wang, M. G. Cui, B. Han, A new method for solving a class of singular twopoint boundary value problems, Appl. Math. Comput., 206 (2008), 721-727
##[33]
Y. L. Wang, H. Yu, F. G. Tan, S. G. Li, Using an effective numerical method for solving a class of Lane-Emden equations, Abstr. Appl. Anal., 2014 (2014), 1-8
##[34]
A. M. Wazwaz, The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3881-3886
##[35]
L.-J. Xie, C.-L. Zhou, S. Xu, An effective numerical method to solve a class of nonlinear singular boundary value problems using improved differential transform method, Springer Plus, 5 (2016), 1-21
]
An improvement of Laguerre computational scheme for solving nonlinear age-structured population models
An improvement of Laguerre computational scheme for solving nonlinear age-structured population models
en
en
In this paper, we simultaneously implement two kinds of orthogonal polynomials for solving a nonlinear age-structured population model. This non-classic type of partial differential equation is typically defined in large domains that makes finding an accurate solution by common techniques to be difficult. The presented method namely modified generalized Laguerre-Chebyshev (MGLC), which is based on the modified generalized Laguerre functions and Chebyshev orthogonal polynomials provides the spectral accuracy. The theoretical and experimental analysis of the scheme reliability verifies the validity of the proposed method in large domains.
268
287
Zakieh
Avazzadeh
School of Mathematical Sciences
Nanjing Normal University
China
z.avazzadeh@njnu.edu.cn
Mohammad
Heydari
Department of Mathematics
Yazd University
Iran
Shantia
Yarahmadian
Mississippi State University
United States
Nonlinear age-structured population model
generalized Laguerre functions
modified generalized Laguerre functions
orthogonal polynomials
error analysis
Article.7.pdf
[
[1]
S. Abbasbandy, E. Shivanian, Numerical simulation based on meshless technique to study the biological population model, Math. Sci., 10 (2016), 123-130
##[2]
L. M. Abia, O. Angulo, J. C. López-Marcos, Age-structured population dynamics models and their numerical solutions, Ecological Modelling, 188 (2005), 122-136
##[3]
L. M. Abia, O. Angulo, J. C. López-Marcos, M. A. López-Marcos, Numerical schemes for a size-structured cell population model with equal fission, Math. Comput. Modelling, 50 (2009), 653-664
##[4]
L. M. Abia, J. C. López-Marcos, Second order schemes for age-structured population equations, J. Biol. Syst., 5 (1997), 1-16
##[5]
O. Angulo, J. C. López-Marcos, M. A. López-Marcos, F. A. Milner, A numerical method for nonlinear age-structured population models with fnite maximum age, J. Math. Anal. Appl., 361 (2010), 150-160
##[6]
Z. Avazzadeh, M. Heydari, Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind, Comput. Appl. Math., 31 (2012), 127-142
##[7]
Z. Avazzadeh, M. Heydari, Chebyshev cardinal functions for solving age-structured population models, Int. J. Appl. Comput. Math., 3 (2017), 2139-2149
##[8]
Z. Avazzadeh, M. Heydari, Haar wavelet method for solving nonlinear age-structured population models, Int. J. Biomath., 10 (2017), 1-21
##[9]
S. S. Bayin, Mathematical Methods in Science and Engineering, John Wiley & Sons, Hoboken (2006)
##[10]
G. Ben-yu, W. Zhong-qing, Numerical integration based on Laguerre-Gauss interpolation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3726-3741
##[11]
B. Blasius, J. R. Kurths, L. Stone, Complex Population Dynamics, World Scientific, New York (2007)
##[12]
J. P. Boyd, The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys., 45 (1982), 43-79
##[13]
J. P. Boyd, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69 (1987), 112-142
##[14]
J. P. Boyd, The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-Mapping for pseudospectral computations on an infinite interval, J. Comput. Phys., 110 (1994), 360-372
##[15]
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publication Inc., Mineola (2001)
##[16]
C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York (1988)
##[17]
M. G. Cui, Z. Chen, The exact solution of nonlinear age-structured population model, Nonlinear Anal. Real World Appl., 8 (2007), 1096-1112
##[18]
C. Cusulin, L. Gerardo-Giorda, A numerical method for spatial diffusion in age-structured populations, Numer. Methods Partial Differential Equations, 26 (2010), 253-273
##[19]
P. J. Davis, Interpolation and Approximation, Dover Publications, New York (1975)
##[20]
D. Funaro, Polynomial Approximation of Differential Equations, Springer-Verlag, Berlin (1992)
##[21]
M. Ghoreishi, A. I. B. M. Ismail, A. K. Alomari, A. S. Bataineh, The comparison between homotopy analysis method and optimal homotopy asymptotic method for nonlinear age-structured population models, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1163-1177
##[22]
M. Heydari, S. M. Hosseini, G. B. Loghmani, Numerical solution of singular IVPs of Lane-Emden type using integral operator and radial basis functions, Int. J. Ind. Math., 4 (2012), 135-146
##[23]
M. Heydari, G. B. Loghmani, A. A. Dehghan, A combination of pseudo-spectral method and extrapolation for solving MHD flow and heat transfer about a rotating disk, Iran. J. Sci. Technol. Trans., 38 (2014), 25-44
##[24]
M. Heydari, G. B. Loghmani, A. A. Dehghan, Numerical study of generalized three-dimensional MHD flow over a porous stretching sheet, J. Appl. Fluid. Mech., 7 (2014), 473-483
##[25]
M. M. Hosseini, S. T. Mohyud-Dinb, H. Ghaneai, Variational iteration method for nonlinear age-structured population models using auxiliary parameter, Z. Naturforsch. A, 65 (2010), 1137-1142
##[26]
M. Iannelli, M.-Y. Kim, E.-J. Park, Splitting method for the numerical approximation of some models of age-structured population dynamics and epidemiology, Appl. Math. Comput., 87 (1997), 69-93
##[27]
M. Iannelli, F. A. Milner, On the approximation of the Lotka-McKendrick equation with finite life-span, J. Comput. Appl. Math., 136 (2001), 245-254
##[28]
A. Kadem, D. Baleanu, Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation, Commun. Nonlinear. Sci. Numer. Simul., 15 (2010), 491-501
##[29]
A. Kadem, D. Baleanu, Fractional radiative transfer equation within Chebyshev spectral approach, Comput. Math. Appl., 59 (2010), 1865-1873
##[30]
F. Kappel, K. P. Zhang, Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993), 518-549
##[31]
M.-Y. Kim, E.-J. Park, An upwind scheme for a nonlinear model in age-structured population dynamics, Comput. Math. Appl., 30 (1995), 5-17
##[32]
H. Koçak, A. Yildirim, An efficient algorithm for solving nonlinear age-structured population models by combining homotopy perturbation and Padé techniques, Int. J. Comput. Math., 88 (2011), 491-500
##[33]
P. Krzyżanowski, D. Wrzosek, D. Wit, Discontinuous Galerkin method for piecewise regular solution to the nonlinear age-structured population model, Math. Biosci., 203 (2006), 277-300
##[34]
P. K. Kythe, M. R. Schäferkotter, Handbook of Computational Method for Integration, Chapman & Hall/CRC Press, Boca Raton (2005)
##[35]
X. Y. Li, Variational iteration method for nonlinear age-structured population models, Comput. Math. Appl., 58 (2009), 2177-2181
##[36]
Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, A numerical solution of open-loop Nash equilibrium in nonlinear differential games based on Chebyshev pseudospectral method, J. Comput. Appl. Math., 300 (2016), 369-384
##[37]
Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, Application of shifted Jacobi pseudospectral method for solving (in) finite-horizon minmax optimal control problems with uncertainty, Internat. J. Control, 13 (2017), 725-739
##[38]
Z. Nikooeinejad, M. Heydari, Nash equilibrium approximation of some class of stochastic differential games: A combined Chebyshev spectral collocation method with policy iteration, J. Comput. Appl. Math., 362 (2019), 41-54
##[39]
K. Parand, A. R. Rezaei, A. Taghavi, Lagrangian method for solving Lane-Emden type equation arising in astrophysics on semi-infinite domains, Acta Astronautica, 67 (2010), 673-680
##[40]
J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal., 38 (2000), 1113-1133
##[41]
J. Shen, T. Tang, L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin (2011)
##[42]
G. Szegő, Orthogonal Polynomials, American Mathematical Society, Providence (1975)
##[43]
M. Tatari, M. Haghighi, A generalized Laguerre-Legendre spectral collocation method for solving initial-boundary value problems, Appl. Math. Model., 38 (2014), 1351-1364
##[44]
J. Valenciano, M. A. J. Chaplain, A Laguerre-Legendre spectral-element method for the solution of partial differential equations on infinite domains: Application to the diffusion of tumour angiogenesis factors, Math. Comput. Modelling, 41 (2005), 1171-1192
##[45]
S. A. Yousefi, M. Behroozifar, M. Dehghan, Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials, Appl. Math. Model., 36 (2012), 945-963
##[46]
L. W. Zhang, Y. J. Deng, K. M. Liew, An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Bound. Elem., 40 (2014), 181-188
]
Coincidence and common fixed point results via simulation functions in G-metric spaces
Coincidence and common fixed point results via simulation functions in G-metric spaces
en
en
In this work, we establish some coincidence and common fixed point theorems in symmetrical G-metric space via simulation functions. In the presented work, we extend the results of Argoubi et al. [H. Argoubi, B. Samet, C. Vetro, J. Nonlinear Sci. Appl., \(\bf 8\) (2015), 1082--1094] by using the concept of G-metric space. An illustrative example is also given to show the genuineness of our results. We also apply our results to derive some coincidence and common fixed point results for right monotone simulation function in the framework of G-metric space.
288
300
Manoj
Kumar
Department of Mathematics
Starex University
India
manojantil18@gmail.com
Sahil
Arora
Department of Mathematics
Lovely Professional University
India
Mohammad
Imdad
Department of Mathematics
Aligarh Muslim University
India
Waleed M.
Alfaqih
Department of Mathematics
Lovely Professional University
India
Simulation function
right monotone simulation function
G-metric space
coincident point
fixed point
Article.8.pdf
[
[1]
R. P. Agarwal, Z. Kadelburg, S. Radenović, On coupled fixed point results in asymmetric $g$-metric spaces, J. Inequal. Appl., 2013 (2013), 1-12
##[2]
R. P. Agarwal, E. Karapınar, A. F. Roldán-López-de Hierro, Fixed Point Theory in Metric Type Spaces, Springer, Cham (2015)
##[3]
R. P. Agarwal, E. Karapınar, A. F. Roldán-López-de Hierro, Last remarks on G-metric spaces and related fixed point theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 110 (2016), 433-456
##[4]
W. M. Alfaqih, R. Gubran, M. Imdad, Coincidence and Common Fixed Point Results under Generalized $(A, S)_f$-Contractions, Filomat, 32 (2018), 2651-2666
##[5]
H. H. Alsulami, E. Karapınar, F. Khojasteh, A. F. Roldán-López-de Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dyn. Nat. Soc., 2014 (2014), 1-10
##[6]
H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094
##[7]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181
##[8]
D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458-464
##[9]
M. Imdad, W. M. Alfaqih, I. A. Khan, Weak $\theta$-contractions and some fixed point results with applications to fractal theory, Adv. Difference Equ., 2018 (2018), 1-18
##[10]
M. Jleli, B. Samet, A new generalization of the banach contraction principle, J. Inequal. Appl., 2014 (2014), 1-8
##[11]
E. Karapınar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343-2350
##[12]
E. Karapınar, A. F. Roldán-López-de Hierro, B. Samet, Matkowski theorems in the context of quasi-metric spaces and consequences on $G$-metric spaces, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 24 (2016), 309-333
##[13]
F. Khojasteh, V. Rakočević, Some new common fixed point results for generalized contractive multi-valued non-self-mappings, Appl. Math. Lett., 25 (2012), 287-293
##[14]
F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189-1194
##[15]
J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. (Rozprawy Mat.), 127 (1975), 1-68
##[16]
N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188
##[17]
Z. Mustafa, A New Structure for Generalized Metric Spaces: With Applications to Fixed Point Theory, Ph.D. thesis (University of Newcastle), Newcastle (2005)
##[18]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297
##[19]
O. Popescu, Some new fixed point theorems for $\alpha$-geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 1-12
##[20]
B. E. Rhoades, Some theorems on weakly contractive maps, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000). Nonlinear Anal., 47 (2001), 2683-2693
##[21]
A. F. Roldán-López-de Hierro, E. Karapınar, C. Roldán-López-de Hierro, J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355
##[22]
D. Wardowski, N. Van Dung, Fixed points of $F$-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146-155
]