]>
2020
21
2
76
Modify adaptive combined synchronization of fractional order chaotic systems with fully unknown parameters
Modify adaptive combined synchronization of fractional order chaotic systems with fully unknown parameters
en
en
This article presents a modify adaptive combined synchronization
for a class of different unknown fractional order chaotic systems.
A combination of different states of the drive systems
asymptotically synchronizes with the desired states of the
response system. Hence, increases the complexity of the
communication channel in secrete communications. The Lyapunov
stability theory proves the asymptotic stability of the error
system at the origin. The design of a suitable adaptive controller
assures the target synchronization. This work provides parameters
update laws that estimate the true values of unknown parameters.
This paper also presents two numerical examples of unknown
different fractional order chaotic systems and simulation results
that validate the efficiency and performance of the proposed
adaptive combined synchronization strategy. The presented adaptive
combined synchronization strategy can be applied to multiple
synchronization strategies. The paper suggests some future
problems related to this work.
99
112
A. Othman
Almatroud
Mathematics Department, Faculty of Science
University of Ha'il
Kingdom of Saudi Arabia
othman_almatroud@yahoo.com
O.
Ababneh
School of Mathematics
Zarqa University
Jordan
M. Mossa
Al-sawalha
Mathematics Department, Faculty of Science
University of Ha'il
Kingdom of Saudi Arabia
Chaos
combined synchronization
adaptive control
unknown parameters
fractional order
Article.1.pdf
[
[1]
S. K. Agrawal, S. Das, A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters, Nonlinear Dynam., 73 (2013), 907-919
##[2]
S. K. Agrawal, S. Das, Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method, J. Process Control, 24 (2014), 517-530
##[3]
S. K. Agrawal, M. Srivastava, S. Das, Synchronization of fractional order chaotic systems using active control method, Chaos Solitons Fractals, 45 (2012), 737-752
##[4]
I. Ahmad, A. B. Saaban, A. B. Ibrahim, M. Shahzad, Global chaos synchronization of new chaotic system using linear active control, Complexity, 21 (2015), 379-386
##[5]
I. Ahmad, A. B. Saaban, A. B. Ibrahim, M. Shahzad, N. Naveed, The synchronization of chaotic systems with different dimensions by a robust generalized active control, Optik, 127 (2016), 4859-4871
##[6]
I. Ahmad, M. Shafiq, M. M. Al-Sawalha, Globally exponential multi switching-combination synchronization control of chaotic systems for secure communications, Chinese J. Phys., 56 (2018), 974-987
##[7]
I. Ahmad, M. Shafiq, M. Shahzad, Global Finite-Time Multi-Switching Synchronization of Externally Perturbed Chaotic Oscillators, Circuits Systems Signal Process., 37 (2018), 5253-5278
##[8]
M. M. Al-Sawalha, A. Al-Sawalha, Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control, Open Phys., 14 (2016), 304-313
##[9]
M. M. Al-Sawalha, M. Shoaib, Reduced-order synchronization of fractional order chaotic systems with fully unknown parameters using modified adaptive control, J. Nonlinear Sci. Appl., 9 (2016), 1815-1825
##[10]
L. Y. T. Andrew, L. X. Feng, C. Y. Dong, Z. Hui, A novel adaptive-impulsive synchronization of fractional-order chaotic systems, Chinese Phys. B, 24 (2015), 1-7
##[11]
S. Bhalekar, V. D. Gejji, Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear. Sci. Numer. Simulat., 15 (2010), 3536-3546
##[12]
D. Chen, R. F. Zhang, J. C. Sprott, H. T. Chen, X. Y. Ma, Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control, Chaos, 22 (2012), 1-9
##[13]
M. R. Faieghi, H. Delavari, Chaos in fractional-order Genesio--Tesi system and its synchronization, Commun. Nonlinear Sci. Numer. Simul., 17 (2011), 7317-7341
##[14]
Z. Gao, X. Z. Liao, Integral sliding mode control for fractional-order systems with mismatched uncertainties, Nonlinear Dynam., 72 (2013), 27-35
##[15]
F. Gao, H. M. Srivastava, Y. N. Gao, X.-J. Yang, A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations, J. Nonlinear Sci. Appl., 9 (2016), 5830-5835
##[16]
A. K. Golmankhaneh, R. Arefi, D. Baleanu, Synchronization in a nonidentical fractional order of a proposed modified system, J. Vib. Control, 21 (2015), 1154-1161
##[17]
A. Hajipour, S. S. Aminabadi, Synchronization of chaotic Arneodo system of incommensurate fractional order with unknown parameters using adaptive method, Optik, 127 (2016), 7704-7709
##[18]
A. S. Hegazi, E. Ahmed, A. E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun. Nonlinear. Sci. Numer. Simul., 18 (2013), 1193-1202
##[19]
R. Hilfer, Application of fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
##[20]
A. M. Liapunov, Stability of Motion, Academic Press, New York--London (1966)
##[21]
W. Y. Ma, C. P. Li, Y. J. Wu, Impulsive synchronization of fractional Takagi-Sugeno fuzzy complex networks, Chaos, 26 (2016), 1-8
##[22]
A. A. Othman, M. S. M. Noorani, M. M. Al-Sawalha, daptive dual anti-synchronization of chaotic systems with fully uncertain parameters, Optik, 127 (2016), 10478-10489
##[23]
A. A. Othman, M. S. M. Noorani, M. M. Al-Sawalha, Adaptive dual synchronization of chaotic and hyperchaotic systems with fully uncertain parameters, Optik, 127 (2016), 7852-7864
##[24]
A. A. Othman, M. S. M. Noorani, M. M. Al-Sawalha, Dual synchronization of chaotic and hyperchaotic systems, J. Nonlinear Sci. Appl., 9 (2016), 4666-4677
##[25]
A. A. Othman, M. S. M. Noorani, M. M. Al-Sawalha, Function projective dual synchronization of chaotic systems with uncertain parameters, Nonlinear Dyn. Syst. Theory, 17 (2017), 193-204
##[26]
L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824
##[27]
I. Podlubny, Fractional Differential Equations, Acedemic Press, San Diego (1999)
##[28]
M. Pourmahmood Aghababa, Control of non-linear non-integer-order systems using variable structure control theory, Trans. Inst. Measurement Control, 36 (2014), 425-432
##[29]
M. Pourmahmood Aghababa, H. Feizi, Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances, Trans. Inst. Measurement Control, 34 (2012), 990-997
##[30]
A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani, I. Hashim, Control and switching synchronization of fractional order chaotic systems using active control technique, J. Adv. Res., 5 (2014), 125-132
##[31]
K. Sayevand, K. Pichaghchi, Analysis of nonlinear fractional KdV equation based on He's fractional derivative, Nonlinear Sci. Lett. A, 7 (2016), 77-85
##[32]
M. Shafiq, I. Ahmad, Multi-Switching Combination Anti-synchronization of Unknown Hyperchaotic Systems, Arab. J. Sci. Eng., 44 (2019), 7335-7350
##[33]
A. K. Singh, V. K. Yadav, S. Das, Dual combination synchronization of the fractional order complex chaotic systems, J. Comput. Nonlinear Dynam., 12 (2016), 1-8
##[34]
X. Song, S. Song, B. Li, Adaptive synchronization of two time-delayed fractional-order chaotic systems with different structure and different order, Optik, 127 (2016), 11860-11870
##[35]
X. Song, S. Song, B. Li, I. T. Balsera, Adaptive projective synchronization for time-delayed fractional-order neural networks with uncertain parameters and its application in secure communications, Trans. Inst. Measurement Control, 40 (2017), 3078-3087
##[36]
M. Srivastava, S. P. Ansari, S. K. Agrawal, S. Das, A. Y. T. Leung, Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method, Nonlinear Dynam., 76 (2014), 905-914
##[37]
J. W. Sun, Q. Yin, Y. Shen, Compound synchronization for four chaotic systems of integer order and fractional order, EPL (Europhys. Lett.), 106 (2012), 1-9
##[38]
Z. Wang, X. Huang, H. Shen, Control of an uncertain fractional order economic system via adaptive sliding mode, Neurocomputing, 83 (2012), 83-88
##[39]
S. Wang, Y. Yu, M. Diao, Hybrid projective synchronization of chaotic fractional order systems with different dimensions, Phys. A, 389 (2010), 4981-4988
##[40]
G.-C. Wu, D. Baleanu, Chaos synchronization of the discrete fractional logistic map, Signal Process., 102 (2014), 96-99
##[41]
X. J. Wu, H. T. Lu, S. L. Shen, Synchronization of a new fractional-order hyperchaotic system, Phys. Lett. A, 373 (2009), 2329-2337
##[42]
Y. Xu, H. Wang, D. Liu, H. Huang, Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations, J. Vib. Control, 21 (2015), 435-448
##[43]
P. Zhou, R. J. Bai, he adaptive synchronization of fractional-order chaotic system with fractional-order $1 < q < 2$ via linear parameter update law, Nonlinear Dynam., 80 (2015), 753-765
##[44]
H. Zhu, S. B. Zhou, Z. S. He, Chaos synchronization of the fractional-order Chen's system, Chaos Solitons Fractals, 41 (2009), 2733-2740
##[45]
M. Zribi, N. Smaoui, H. Salim, Synchronization of the unified chaotic systems using a sliding mode controller, Chaos Solitons Fractals, 42 (2009), 3197-3209
]
Generalized essential maps and coincidence type theory for compact multifunctions
Generalized essential maps and coincidence type theory for compact multifunctions
en
en
In this paper we discuss
generalized essential maps. By establishing a very simple result we
are able to present a variety of topological transversality
theorems in a general setting
113
119
Donal
O'Regan
School of Mathematics, Statistics and Applied Mathematics
National University of Ireland
Ireland
donal.oregan@nuigalway.ie
Essential maps
homotopy
admissible maps
Article.2.pdf
[
[1]
C. D. Aliprantis, K. C. Border, Infinite--Dimensional Analysis, Studies in Economic Theory, Springer--Verlag, Berlin (1994)
##[2]
R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa (1977)
##[3]
L. Górniewicz, Topological fixed point theory of multivalued mappings, Kluwer Academic Publ., Dordrecht (1999)
##[4]
A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 983-985
##[5]
W. Kryszewski, Topological and approximation methods of degree theory of set--valued maps, Dissertationes Math. (Rozprawy Mat.), 336 (1994), 1-101
##[6]
D. O'Regan, Generalized coincidence theory for set--valued maps, J. Nonlinear Sci. Appl., 10 (2017), 855-864
##[7]
D. O'Regan, Topological transversality principles and general coincidence theory, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 25 (2017), 159-170
##[8]
R. Precup, On the topological transversality principle, Nonlinear Anal., 20 (1993), 1-9
]
A class of second order nondifferentiable symmetric duality relations under generalized assumptions
A class of second order nondifferentiable symmetric duality relations under generalized assumptions
en
en
In this article, a pair of second-order nondifferentiable symmetric dual model in optimization problem is formulated over arbitrary cones. For a differentiable function, we consider the definition of strongly \(K\)-pseudobonvexity convexity. Next, we derive the appropriate duality results under aforesaid assumptions.
120
126
Ramu
Dubey
Department of Mathematics
J.C. Bose University of Science and Technology
India
rdubeyjiya@gmail.com
Vandana
Department of Management Studies
Indian Institute of Technology Madras
India
vdrai1988@gmail.com
Vishnu Narayan
Mishra
Department of Mathematics
Indira Gandhi National Tribal University
India
vishnunarayanmishra@gmail.com
Seda
Karateke
Department of Mathematics and Computer Science, Faculty of Science and Letters
Istanbul Arel University
Turkey
sedakarateke@arel.edu.tr
Symmetric duality
second-order
non-differentiable
strongly \(K\)-pseudobonvexity
Article.3.pdf
[
[1]
X. H. Chen, Higher-order symmetric duality in nondifferentiable multiobjective programming problems, J. Math. Anal. Appl., 290 (2004), 423-435
##[2]
R. Dubey, Deepmala, V. N. Mishra, Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone contraints, Statist. Optim. Infor. Comput., 8 (2020), 187-205
##[3]
R. Dubey, A. Kumar, R. Ali, L. N. Mishra, New class of $G$-Wolfe-type symmetric duality model and duality relations under $G_f$ -bonvexity over arbitrary cones, J. Inequal. Appl., 30 (2020), 1-30
##[4]
R. Dubey, V. N. Mishra, Symmetric duality results for second-order nondifferentiable multiobjective programming problem, RAIRO-Oper. Res., 53 (2019), 539-558
##[5]
R. Dubey, L. N. Mishra, R. Ali, Special class of second-order non-differentiable symmetric duality problems with $(G,\alpha_f)$-pseudobonvexity assumptions, Mathematics, 763 (2019), 1-16
##[6]
R. Dubey, L. N. Mishra, L. M. S. Ruiz, Nondifferentiable $G$-Mond-Weir type multiobjective symmetric fractional problem and their duality theorems under generalized assumptions, Symmetry, 11 (2019), 1-18
##[7]
Y. Gao, Higher order symmetric duality in multiobjective programming problems, Acta Math. Appl. Sin. Engl. Ser., 32 (2016), 485-494
##[8]
M. A. Hanson, Second-order invexity and duality in mathematical programming, Opsearch, 30 (1993), 313-320
##[9]
A. Jayswal, I. M. Stancu-Minasian, D. Kumar, Higher-order duality for multiobjective programming problem involving $(F,\alpha,\rho, d)$-V-type-I functions, J. Math. Model. Algorithms Oper. Res., 13 (2014), 125-141
##[10]
O. L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math. Anal. Appl., 51 (1975), 607-620
##[11]
M. V. Stefaneseu, M. Ferrara, A. Stefanescu, Multiobjective programming with new invexities, Optim. Lett., 7 (2013), 855-870
##[12]
S. K. Suneja, S. Agarwal, S. Davar, Multiobjective symmetric duality involving cones, European J. Oper. Res., 141 (2002), 471-479
##[13]
S. K. Suneja, M. K. Srivastava, M. Bhatia, Higher order Duality in Multiobjective Fractional Programming with Support Functions, J. Math. Anal. Appl., 347 (2008), 8-17
##[14]
Vandana, R. Dubey, Deepmala, L. N. Mishra, V. N. Mishra, Duality relations for a class of a multiobjective fractional programming problem involving support functions, Amer. J. Oper. Res., 8 (2018), 294-311
##[15]
G. Ying, Higher-order symmetric duality for a class of multiobjective fractional programming problems, J. Inequal. Appl., 2012 (2012), 1-12
]
Modified Laplace transform and its properties
Modified Laplace transform and its properties
en
en
In this paper we propose a new definition of the modified Laplace transform \(\mathcal{L}_{a}(f(t))\) for a piece-wise continuous function of exponential order which further reduces to simple Laplace transform for \(a=e\) where \(a\neq1\) and \(a>0.\) Also we prove some basic results of this modified Laplace transform and connection with different functions.
127
135
Mohd
Saif
Department of Applied Mathematics
Aligarh Muslim University
India
usmanisaif153@gmail.com
Faisal
Khan
Department of Mathematics
Aligarh Muslim University
India
faisalamu2011@gmail.com
Kottakkaran Sooppy
Nisar
Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser
Prince Sattam bin Abdulaziz University
Saudi Arabia
fn.sooppy.psau.edu.sa
Serkan
Araci
Department of Economics, Faculty of Economics, Administrative and Social Sciences
Hasan Kalyoncu University
Turkey
serkan.araci@hku.edu.tr
Laplace transform
convolution
double Laplace transform
Article.4.pdf
[
[1]
K.-S. Chiu, T. X. Li, Oscillatory and Periodic Solutions of Differential Equations with Piecewise Constant Generalized Mixed Arguments, Math. Nachr., 2019 (2019), 1-12
##[2]
W. S. Chung, T. Kim, H. I. Kwon, On the $q$-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156-168
##[3]
L. Debnath, D. Bhatta, Integral Transform and Their Application, CRC Press, Boca Raton (2015)
##[4]
A. Kilicman, H. Eltayeb, On a new integral transform and differential equation, Math. Prob. Eng., 2010 (2010), 1-13
##[5]
A. Kilicman, H. E. Gadian, On the application of Laplace and Sumudo transforms, J. Franklin Inst., 347 (2010), 848-862
##[6]
T. Kim, D. S. Kim, Degenerate Laplace Transform and Degenerate Gamma Function, Russ. J. Math. Phys., 24 (2017), 241-248
##[7]
Y. J. Kim, B. M. Kim, L. C. Jang, J. Kwon, A Note on Modified Degenerate Gamma and Laplace Transformation, Symmetry, 10 (2018), 1-8
##[8]
N. Kokulan, C. H. Lai, A Laplace transform method for the image in-painting, J. Algorithms Comput. Technol., 9 (2015), 95-104
##[9]
G. V. Nozhak, A. A. Paskar, Application of a modified discrete Laplace transform to finding processes in certain hyperbolic systems with distributed parameters (Russian), Mathematical methods in mechanics. Mat. Issled., 57 (1980), 83-90
##[10]
S. L. Nyeo, R. R. Ansari, Sparse Bayesian learning for the Laplace transform inversion in dynamic light scattering, J. Comput. Appl. Math., 235 (2011), 2861-2872
##[11]
E. J. Riekstyn's, On certain possibilities of solution of a system of telegraph equations by means of the Laplace transform in the case of a composite conductor (Russian), Latvijas Valsts Univ. Zinatn. Raksti, 8 (1956), 49-53
##[12]
I. N. Sneddon, Fourier Transform, McGraw-Hill Book Co., New York (1951)
##[13]
G.-H. Tsaur, J. Wang, Close connections between the methods of Laplace transform, quantum canonical transform, and supersymmetry shape-invariant potentials in solving Schrödinger equations, Chinese J. Phys., 53 (2015), 1-18
##[14]
S. Viaggiu, Axial and polar gravitational wave equations in a de Sitter expanding universe by Laplace transform, Classical Quantum Gravity, 34 (2017), 1-16
]
Solving fuzzy Burgers equation by variational iteration method
Solving fuzzy Burgers equation by variational iteration method
en
en
In this paper, the variational iteration method (VIM) has been applied to find the fuzzy solutions of the fuzzy Burgers equations with variable coefficients and fuzzy parameters. We follow the same strategy as in Buckley and Feuring which is: (1) first check to see if the Buckly-Feuring method produces a solution, and (2) if the Buckly-Feuring method does not give a solution,
then see if the Seikkala procedure generates a solution. Several examples are given to show the new theorem of the Buckley-Feuring solution and the Seikkala solution.
136
149
Atimad
Harir
Laboratory of Applied Mathematics and Scientific Computing
Sultan Moulay Slimane University
Morocco
atimad.harir@gmail.com
Said
Melliani
Laboratory of Applied Mathematics and Scientific Computing
Sultan Moulay Slimane University
Morocco
L. Saadia
Chadli
Laboratory of Applied Mathematics and Scientific Computing
Sultan Moulay Slimane University
Morocco
Fuzzy Burgers equations
variational iteration method
fuzzy number
Article.5.pdf
[
[1]
T. A. Abassy, M. A. El-Tawil, H. El Zoheiry, Toward a modified variational iteration method, J. Comput. Appl. Math., 207 (2007), 137-147
##[2]
N. Bildik, A. Konuralp, The Use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for Solving Different Types of Nonlinear Partial Differential Equations, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 65-70
##[3]
J. J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000), 43-54
##[4]
J. J. Buckley, Y. X. Qu, Solving fuzzy equations: a new solution concept, Fuzzy Sets and Systems, 39 (1991), 291-301
##[5]
L. S. Chadli, A. Harir, S. Melliani, Solutions of fuzzy wave-like equations by variational iteration method, Ann. Fuzzy Math. Inform., 8 (2014), 527-547
##[6]
P. Diamond, P. E. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific Publishing Co., River Edge (1994)
##[7]
R. Getschel, W. Voxman, Elementary fuzzy calculus, Fuzzy sets and Systems, 18 (1986), 31-43
##[8]
A. Harir, S. Melliani, L. S. Chadli, Fuzzy Space-Time Fractional Telegraph Equations, Int. J. Math. Trends Tech., 64 (2018), 101-108
##[9]
A. Harir, S. Melliani, L. S. Chadli, Existence and Uniqueness of a Fuzzy Solution for some Fuzzy Neutral partial Differential Equation with nonlocal condition, Int. J. Math. Trends Tech., 65 (2019), 102-108
##[10]
A. Harir, S. Melliani, L. S. Chadli, Hybrid Fuzzy Differential Equations, AIMS Math., 5 (2019), 273-285
##[11]
A. Harir, S. Melliani, L. S. Chadli, Fuzzy generalized conformable fractional derivative. Advances in Fuzzy Systems, Adv. Fuzzy Syst., 2020 (2020), 1-7
##[12]
A. Harir, S. Melliani, L. S. Chadli, E. Minchev, Solutions of fuzzy fractional heat-like and wave-like equations by variational iteration method, Int. J. Contemp. Math. Sci., 15 (2020), 11-35
##[13]
J.-H. He, A variational iteration approach to nonlinear problems and its applications, Mech. Appl., 20 (1998), 30-31
##[14]
J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19 (2004), 847-851
##[15]
J.-H. He, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20 (2006), 1141-1199
##[16]
M. Ma, M. Friedman, A. Kandel, A new fuzzy arithmetic, Fuzzy Sets and Systems, 108 (1999), 83-90
##[17]
S. Melliani, A. Harir, L. S. Chadli, Solutions of fuzzy heat-like equations by variational iteration method, Ann. Fuzzy Math. Inform., 10 (2015), 29-44
##[18]
S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330
##[19]
K. Shah, A. Ullah, Using a hybrid technique for analytical solution of coupled system of two-dimensional Burger's equations, Results in Nonlinear Anal., 1 (2018), 107-115
##[20]
A.-M. Wazwaz, The variational iteration method for solving linear and nonlinear systems of PDEs, Comput. Math. Appl., 54 (2007), 895-902
##[21]
A.-M. Wazwaz, A. Gorguis, Exact solutions for heat-like and wave-like equations with variable coefficients, Appl. Math. Comput., 149 (2004), 15-29
##[22]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353
]
Numerical solution of second order Painlevé differential equation
Numerical solution of second order Painlevé differential equation
en
en
In this paper, the second order Painlevé differential equation is solved by variational iteration algorithm-I with an auxiliary parameter (VI-I with AP), how to optimally find the auxiliary parameter and Pade approximates for the numerical solution are explained. The effectiveness and suitability of the proposed method are shown by solving two types of second order Painlevé differential equation and the proposed method is compared with other methods to illustrate the accuracy and efficiency of the method.
150
157
Hijaz
Ahmad
Department of Basic Sciences
University of Engineering and Technology
Pakistan
Tufail A.
Khan
Department of Basic Sciences
University of Engineering and Technology
Pakistan
Shao-Wen
Yao
School of Mathematics and Information Science
Henan Polytechnic University
China
yaoshaowen@hpu.edu.cn
Painlevé equation
second order Painlevé differential equation
VIA-I with AP
RK4
Article.6.pdf
[
[1]
H. Ahmad, Variational iteration algorithm--II with an auxiliary parameter and its optimal determination, Nonlinear Sci. Lett. A, 9 (2018), 62-72
##[2]
H. Ahmad, Variational iteration method with an auxiliary parameter for solving differential equations of the fifth order, Nonlinear Sci. Lett. A, 9 (2018), 27-35
##[3]
H. Ahmad, Variational Iteration Algorithm--I with an Auxiliary Parameter for Solving Fokker--Planck Equation, Earthline J. Math. Sci., 2 (2019), 29-37
##[4]
H. Ahmad, T. A. Khan, Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations, J. Low Frequency Noise Vibr. Active Control, 38 (2019), 1113-1124
##[5]
H. Ahmad, T. A. Khan, Variational iteration algorithm I with an auxiliary parameter for the solution of differential equations of motion for simple and damped mass–spring systems, Noise & Vibration Worldwide, 51 (2020), 12-20
##[6]
H. Ahmad, T. A. Khan, C. Cesarano, Numerical Solutions of Coupled Burgers' Equations, Axioms, 8 (2019), 1-16
##[7]
H. Ahmad, A. R. Seadawy, T. A. Khan, Numerical solution of Korteweg-de Vries-Burgers equation by the modified variational Iteration algorithm--II arising in shallow water waves, Phys. Scr., 95 (2020), 1-12
##[8]
N. Anjum, J.-H. He, Laplace transform: Making the variational iteration method easier, Appl. Math. Lett., 92 (2019), 134-138
##[9]
S. S. Behzadi, Convergence of Iterative Methods for Solving Painlevé Equation, Appl. Math. Sci. (Ruse), 4 (2010), 1489-1507
##[10]
A. V. Borisov, N. A. Kudryashov, Paul Painlevé and his contribution to science, Regul. Chaotic Dyn., 19 (2014), 1-19
##[11]
J. P. Boyd, Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain, Comput. Phys., 11 (1997), 299-303
##[12]
P. A. Clarkson, Painlevé equations--nonlinear special functions, J. Comput. Appl. Math., 153 (2003), 127-140
##[13]
E. Hashemizadeh, F. Mahmoudi, Numerical solution of Painlevé equation by Chebyshev polynomials, J. Interpolat. Approx. Sci. Comput., 2016 (2016), 26-31
##[14]
J.-H. He, A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 27 (2019), 1-11
##[15]
J.-H. He, A modified Li--He's variational principle for plasma, Int. J. Numer. Methods Heat Fluid Flow, 2019 (2019), 1-11
##[16]
J.-H. He, Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, Int. J. Numer. Methods Heat Fluid Flow, 2019 (2019), 1-15
##[17]
J.-H. He, The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators, J. Low Frequency Noise Vibr. Active Control, 2019 (2019), 1-12
##[18]
J.-H. He, Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mech., 231 (2020), 899-906
##[19]
J.-H. He, H. Latifizadeh, A general numerical algorithm for nonlinear differential equations by the variational iteration method, Int. J. Numer. Methods Heat Fluid Flow, 2020 (2020), 1-11
##[20]
C.-H. He, Y. Shen, F.-Y. Ji, J.-H. He, Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28 (2020), 1-13
##[21]
J.-H. He, C. Sun, A variational principle for a thin film equation, J. Math. Chem., 57 (2019), 2075-2081
##[22]
E. Hesameddini, A. Peyrovi, The Use of Variational Iteration Method and Homotopy Perturbation Method for Painlevé Equation I, Appl. Math. Sci., 3 (2009), 1861-1871
##[23]
M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, Pergamon Press, Oxford (1978)
##[24]
M. Nadeem, H. Ahmad, Variational Iteration Method for Analytical Solution of the Lane-Emden Type Equation with Singular Initial and Boundary Conditions, Earthline J. Math. Sci., 2 (2019), 127-142
##[25]
M. Nadeem, F. Li, H. Ahmad, He's variational iteration method for solving non--homogeneous Cauchy Euler differential equations, Nonlinear Sci. Lett. A Math. Phys. Mech., 9 (2018), 231-237
##[26]
M. Nadeem, F. Li, H. Ahmad, Modified Laplace variational iteration method for solving fourth--order parabolic partial differential equation with variable coefficients, Comput. Math. Appl., 2019 (2019), 1-10
##[27]
D.-N. Yu, J.-H. He, A. G. Garcıa, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators, J. Low Frequency Noise Vibr. Active Control, 2018 (2018), 1-11
]
Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations
Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations
en
en
In this article, a new modification of the Adomian Decomposition Method (ADM) that is called the Laplace Discrete Adomian Decomposition Method (LDADM) is applied to non-homogeneous nonlinear Volterra-Fredholm integro-differential equations. This method is based upon the Laplace Adomian decomposition method coupled with some quadrature rules of numerical integration. The performance of the proposed method is verified through absolute error measures between the approximated solutions and exact solutions. The series of experimental numerical results show that our proposed method performs in high accuracy and efficiency. The study highlights that the proposed method could be used to overcome the analytical approaches in solving nonlinear Volterra-Fredholm integro-differential equations.
158
163
Lafta A.
Dawood
Department of Mathematics
Thi Qar Directorates of Education
Iraq
Ahmed A.
Hamoud
Department of Mathematics, Faculty of Education and Science
Taiz University
Yemen
drahmedselwi985@gmail.com
Nedal M.
Mohammed
Department of Computer Science, Faculty of Education and Science
Taiz University
Yemen
Volterra-Fredholm integro-differential equation
Adomian decomposition method
Laplace transform
absolute error
approximated solution
Article.7.pdf
[
[1]
O. Abu Arqub, M. Al-Smadi, Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations, Appl. Math. Comput., 243 (2014), 911-922
##[2]
O. Abu Arqub, M. Al-Smadi, N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219 (2013), 8938-8948
##[3]
O. Abu Arqub, B. Maayah, Solutions of Bagley--Torvik and Painleve equations of fractional order using iterative reproducing kernel algorithm, Neural Comput. Appl., 29 (2018), 1465-1479
##[4]
A. Akyüz, M. Sezer, A Chebyshev collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math., 72 (1999), 491-507
##[5]
S. Alkan, V. F. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order, Tbilisi Math. J., 10 (2017), 1-13
##[6]
M. Al-Mazmumy, H. Al-Malki, Some modifications of adomian decomposition methods for nonlinear partial differential equations, Int. J. Res. Agricul. Sci., 23 (2015), 164-173
##[7]
H. O. Bakodah, M. Al-Mazmumy, S. O. Almuhalbedi, An efficient modification of the Adomian decomposition method for solving integro-differential equations, Math. Sci. Lett., 6 (2017), 15-21
##[8]
L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge (1985)
##[9]
W. H. Enright, M. Hu, Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay, Appl. Numer. Math., 24 (1997), 175-190
##[10]
A. A. Hamoud, M. S. Bani Issa, K. P. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro differential equations, Nonlinear Funct. Anal. Appl., 23 (2018), 797-805
##[11]
A. A. Hamoud, L. A. Dawood, K. P. Ghadle, S. M. Atshan, Usage of the modified variational iteration technique for solving Fredholm integro-differential equations, Int. J. Mech. Prod. Eng. Res. Develop., 9 (2019), 895-902
##[12]
A. A. Hamoud, K. P. Ghadle, The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro-differential equations, J. Korean Soc. Ind. Appl. Math., 21 (2017), 17-28
##[13]
A. A. Hamoud, K. P. Ghadle, The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations, Korean J. Math., 25 (2017), 323-334
##[14]
A. A. Hamoud, K. P. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math., 60 (2018), 375-395
##[15]
A. A. Hamoud, K. P. Ghadle, Homotopy analysis method for the first order fuzzy Volterra-Fredholm integro-differential equations, Indonesian J. Ele. Eng. Comput. Sci., 11 (2018), 857-867
##[16]
A. A. Hamoud, K. P. Ghadle, Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations, J. Indian Math. Soc., 85 (2018), 52-69
##[17]
A. A. Hamoud, K. P. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, J. Math. Model., 6 (2018), 91-104
##[18]
A. A. Hamoud, K. P. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Probl. Anal. Issues Anal., 7 (2018), 41-58
##[19]
A. A. Hamoud, K. P. Ghadle, Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang J. Math., 49 (2018), 301-315
##[20]
A. A. Hamoud, K. P. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5 (2019), 58-69
##[21]
A. A. Hamoud, K. P. Ghadle, S. M. Atshan, The approximate solutions of fractional integro-differential equations by using modified Adomian decomposition method, Khayyam J. Math., 5 (2019), 21-39
##[22]
A. A. Hamoud, K. P. Ghadle, M. S. Bani Issa, Giniswamy, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math., 31 (2018), 333-348
##[23]
A. A. Hamoud, K. P. Ghadle, P. A. Pathade, An existence and convergence results for Caputo fractional Volterra integro-differential equations, Jordan J. Math. Stat., 12 (2019), 307-327
##[24]
A. A. Hamoud, K. H. Hussain, K. P. Ghadle, The reliable modified Laplace Adomian decomposition method to solve fractional Volterra-Fredholm integro-differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 26 (2019), 171-184
##[25]
A. A. Hamoud, K. H. Hussain, N. M. Mohammed, K. P. Ghadle, Solving Fredholm integro-differential equations by using numerical techniques, Nonlinear Funct. Anal. Appl., 24 (2019), 533-542
##[26]
A. A. Hamoud, N. M. Mohammed, K. P. Ghadle, A study of some effective techniques for solving Volterra-Fredholm integral equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 26 (2019), 389-406
##[27]
K. H. Hussain, A. A. Hamoud, N. M. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 827-836
##[28]
A. Karamete, M. Sezer, A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math., 79 (2002), 987-1000
##[29]
S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Appl. Math., 1 (2001), 141-155
##[30]
O. Kiymaz, An Algorithm for solving initial value problems using Laplace Adomian decomposition method, Appl. Math. Sci. (Ruse), 3 (2009), 1435-1459
##[31]
K. Maleknejad, F. Mirzaee, S. Abbasbandy, Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. Math. Comput., 155 (2004), 317-328
##[32]
K. Maleknejad, M. Tavassoli Kajani, Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput., 159 (2004), 603-612
##[33]
D. Nazari, S. Shahmorad, Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions, J. Comput. Appl. Math., 234 (2010), 883-891
##[34]
A.-M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, Springer, Heidelberg (2011)
]
On averaging methods for general parabolic partial differential equation
On averaging methods for general parabolic partial differential equation
en
en
The averaging method of the quantitative and the qualitative analysis of the parabolic partial differential equations appears as an exciting field of the investigation. The aim of this paper is to generalize some known results due to Krol on the averaging methods and use them to solve the fractional parabolic partial differential equations and a special case of these equations is studied. We treat some different cases related to the averaging method.
164
175
Mahmoud M.
El-Borai
Department of Mathematics and Computer Science, Faculty of Science
Alexandria University
Egypt
m_m_elborai@yahoo.com
Hamed Kamal
Awad
Department of Mathematics, Faculty of Science
Damanhour University
Egypt
hamedk66@sci.dmu.edu.eg
Randa Hamdy M.
Ali
Department of Mathematics, Faculty of Science
Damanhour University
Egypt
rhamdy1989@gmail.com
Averaging method
fractional parabolic partial differential equation
Existence and uniqueness of solutions
Article.8.pdf
[
[1]
A. Ben Lemlih, J. A. Ellison, Method of averaging and the quantum anharmonic oscillator, Phys. Rev. Lett., 55 (1985), 1950-1953
##[2]
S. D. Èĭdelʹman, On fundamental solutions of parabolic systems, Math. Sobornik, 38 (1956), 51-92
##[3]
M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Soliton Fractals, 14 (2002), 433-440
##[4]
M. M. El-Borai, Evolution equations without semi groups, J. Appl. Math. Comp., 149 (2004), 815-821
##[5]
M. M. El-Borai, H. K. Awad, R. Hamdy, M. Ali, A parabolic transform and averaging methods for general partial differential equations, J. Adv. Math., 17 (2019), 352-361
##[6]
M. M. El-Borai, K. El-Said El-Nadi, A parabolic transform and some stochastic Ill-posed problem, British J. Math. Comput. Sci., 9 (2015), 418-426
##[7]
M. M. El-Borai, K. El-Said El-Nadi, On the solutions of Ill-posed Cauchy problems for some singular integro-partial differential equations, Global J. Math., 13 (2019), 899-905
##[8]
M. M. El-Borai, K. El-Said El-Nadi, E. G. El-Akabawy, On some fractional evolution equations, Comput. Math. Appl., 59 (2010), 1352-1355
##[9]
M. M. El-Borai, K. El-Said El-Nadi, H. A. Foad, On some fractional stochastic delay differential equations, Comput. Math. Appl., 59 (2010), 1165-1170
##[10]
M. M. El-Borai, W. G. El-Sayed, F. N. Ghaffoori, On the Cauchy problem for some parabolic fractional partial differential equations with time delays, J. Math. Syst. Sci., 6 (2016), 194-199
##[11]
M. M. El-Borai, O. L. Moustafa, F. H. Michael, On the correct formulation of a nonlinear differential equations in Banach space, Int. J. Math. Math. Sci., 26 (2001), 1-8
##[12]
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964)
##[13]
M. S. Krol, On the averaging method in nearly time-periodic advection-diffusion problems, SIAM J. Appl. Math., 51 (1991), 1622-1637
##[14]
M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs (1967)
##[15]
F. Verhulst, On averaging methods for partial differential equations, In: Symmetry and perturbation theory, 1999 (1999), 79-95
]