]>
2023
28
3
102
Coefficient functionals for a class of bounded turning functions connected to three leaf function
Coefficient functionals for a class of bounded turning functions connected to three leaf function
en
en
In this article, we define the class of bounded turning functions connected
with three leaf function to investigate results for the estimates of four
initial coefficients, Fekete-Szegö functional, the second-order Hankel
determinant and Zalcman conjecture and these results are shown to be sharp.
Furthermore, we estimate the bounds of the third-order Hankel determinants
for this class and for its 2-fold and 3-fold symmetric functions. Finally we
evaluate the sharp Krushkal inequality for the functions in this class.
213
223
G.
Murugusundaramoorthy
School of Advanced Sciences
Vellore Institute of Technology
India
gmsmoorthy@yahoo.com
M. G.
Khan
Institute of Numerical Sciencies
Kohat University of Science and Technology
Pakistan
ghaffarkhan020@gmail.com
B.
Ahmad
Government Degree College Mardan HED KP
Pakistan
pirbakhtiarbacha@gmail.com
V. K.
Mashwani
Institute of Numerical Sciencies
Kohat University of Science and Technology
Pakistan
T.
Abdeljawad
Department of Mathematics and General Sciences
Department of Medical Research
Prince Sultan University
China Medical University
Saudi Arabia
Taiwan
tAbdeljawad@psu.edu.sa
Z.
Salleh
Department of Mathematics, Feculty of Ocean Engineering Technology and Informatics
University Malaysia Terengganu
Malaysia
zabidin@umt.edu.my
Analytic functions
three leaf function
subordination
Hankel determinant
invex set
Zalcman conjuncture
Krushkal inequality
Article.1.pdf
[
[1]
M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open. Math., 17 (2019), 1615-1630
##[2]
K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory. Appl., 6 (2007), 1-7
##[3]
D. Bansal, J. Sokól, Zalcman conjecture for some subclass of analytic functions, J. Frac. Cal. Appl., 8 (2001), 1-5
##[4]
J. E. Brown, A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467-474
##[5]
N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc.,, 45 (2019), 213-232
##[6]
N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Serivasatava, Starlike functions related to the Bell numbers, Symmetry,, 2019 (2019), 1-11
##[7]
J. Dzoik, R. K. Raina, J. Sokól, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Modelling, 57 (2013), 1203-1211
##[8]
S. Gandhi, Radius estimates for three leaf function and convex combination of starlike functions, In: Mathematical Analysis I: Approximation theory, 2020 (2020), 173-184
##[9]
W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3), 18 (1968), 77-94
##[10]
S. Islam, M. G. Khan, B. Ahmad, M. Arif, R. Chinram, Q-Extension of starlike functions subordinated with a trigonometric sine function, Mathematics, 10 (2020), 1-16
##[11]
S. Kanas, D. Răducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196
##[12]
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc.,, 20 (1969), 8-12
##[13]
M. G. Khan, B. Ahmad, N. Khan, W. K. Mashwani, S. Arjika, B. Khan, R. Chinram, Applications of Mittag-Leffer type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, 2021 (2021), 1-9
##[14]
M. G. Khan, B. Ahmad. G. Murugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of modified Sigmoid functions to a class of starlike functions, J. Funct. Spaces, 2020 (2020), 1-8
##[15]
M. G. Khan, B. Ahmad. J. Sokól, Coefficient problems in a class of functions with bounded turning associated with sine funtion, Eur. J. Pure. Appl. Math., 14 (2021), 53-64
##[16]
M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functional for a class of bounded turning functions related to modified sigmoid function, AIMS Math., 7 (2021), 3133-3149
##[17]
S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv, 2014 (2014), 1-19
##[18]
R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225-230
##[19]
W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc.,, 104 (1988), 741-744
##[20]
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated exponential function, Bull. Malays. Math. Sci. Soc.,, 38 (2015), 365-386
##[21]
J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math., 22 (1976), 337-346
##[22]
C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1976), 108-112
##[23]
C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Gottingen (1975)
##[24]
R. K. Raina, J. Sokól, On Coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427-1433
##[25]
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 505-510
##[26]
K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with cardioid, Afr. Mat., 27 (2016), 923-939
##[27]
L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry,, 2 (2020), 1-12
##[28]
L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 2021 (2021), 1-12
##[29]
J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101-105
##[30]
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327-344
##[31]
H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 1-9
##[32]
H. M. Srivastava, Ş. Altınkaya, S. Yalcin, Hankel determinat for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503-516
##[33]
H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal.,, 22 (2021), 511-526
##[34]
L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79-104
##[35]
D. M. Wilkes, S. D. Morgera, F. Noor, M. H. Hayes, A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitzplus-Hankel matrix, IEEE Transactions on Signal Processing, 39 (1991), 2146-2148
]
Fuzzy Ostrowski type inequalities via \(\phi\)-\(\lambda\)-convex functions
Fuzzy Ostrowski type inequalities via \(\phi\)-\(\lambda\)-convex functions
en
en
We would like to state well-known Ostrowski inequality via \(\phi\)-\(\lambda\)-convex by using the Fuzzy Reimann integrals. In addition, we establish some Fuzzy Ostrowski type inequalities for the class of functions whose derivatives in absolute values at certain powers are \(\phi\)-\(\lambda\)-convex by Holder's and power mean inequalities. We are introducing very first time that the class of \(\phi\)-\(\lambda\)-convex function, which is the generalization of many important classes including class of \(h\)-convex, Godunova-Levin \(s\)-convex, \(s\)-convex in the \(2^{\rm nd}\) kind and hence contains convex functions. It also contains class of \(P\)-convex and class of Godunova-Levin. In this way we also capture the results with respect to convexity of functions.
224
235
A.
Hassan
Department of Mathematics
Shah Abdul Latif University
Pakistan
alihassan.iiui.math@gmail.com
A. R.
Khan
Department of Mathematics
University of Karachi
Pakistan
asifrk@uok.edu.pk
F.
Mehmood
Department of Mathematics
Dawood University of Engineering and Technology
Pakistan
faraz.mehmood@duet.edu.pk
M.
Khan
Department of Mathematics
Dawood University of Engineering and Technology
Pakistan
Maria.Khan@duet.edu.pk
Ostrowski inequality
convex functions
fuzzy sets
Article.2.pdf
[
[1]
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076
##[2]
A. Arshad, A. R. Khan, Hermite–Hadamard–Fejer Type Integral Inequality for s−p-Convex Functions of Several Kinds, Transylv. J. Math. Mech., 11 (2019), 25-40
##[3]
E. F. Beckenbach, Convex functions,, Bull. Amer. Math. Soc., 54 (1948), 439-460
##[4]
W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math. (Beograd) (N.S.), 23 (1978), 13-20
##[5]
P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004), 299-308
##[6]
S. S. Dragomir, On the Ostrowski’s Integral Inequality for Mappings with Bounded Variation and Applications, Math. Inequal. Appl., 4 (2001), 59-66
##[7]
S. S. Dragomir, Refinements of the Generalised Trapozoid and Ostrowski Inequalities for Functions of Bounded Variation, Arch. Math., 91 (2008), 450-460
##[8]
S. S. Dragomir, A Companion of Ostrowski’s Inequality for Functions of Bounded Variation and Applications, Int. J. Nonlinear Anal. Appl., 5 (2014), 89-97
##[9]
S. S. Dragomir, A Functional Generalization of Ostrowski Inequality via Montgomery identity, Acta Math. Univ. Comenian. (N.S.), 84 (2015), 63-78
##[10]
S. S. Dragomir, Inequalities of Jensen Type for $\phi$-Convex Functions, Fasciculi Mathematici, 5 (2015), 35-52
##[11]
S. S. Dragomir, Integral inequalities of Jensen type for $\lambda$-convex functions, Mat. Vesnik, 68 (2016), 45-57
##[12]
S. S. Dragomir, N. S. Barnett, An Ostrowski Type Inequality for Mappings whose Second Derivatives are Bounded and Applications, J. Indian Math. Soc. (N.S.), 66 (1999), 237-245
##[13]
S. S. Dragomir, P. Cerone, N. S. Barnett, J. Roumeliotis, An Inequality of the Ostrowski Type for Double Integrals and Applications for Cubature Formulae, Tamsui Oxf. J. Math. Sci., 16 (2000), 1-16
##[14]
S. S. Dragomir, P. Cerone, J. Roumeliotis, A new generalization of Ostrowskis intergral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), 19-25
##[15]
S. S. Dragomir, J. Pečarić, L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341
##[16]
A. Ekinci, Klasik Eşitsizlikler Yoluyla Konveks Fonksiyonlar için İntegral Eşitsizlikler, Ph.D. Thesis, Ataturk University (2014)
##[17]
S. Gal, Approximation theory in fuzzy setting, In: Handbook of analytic-computational methods in applied mathematics, 2000 (2000), 617-666
##[18]
E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numer. Math. Math. Phys. (Russian),, 166 (1985), 138-142
##[19]
N. Irshad, A. R. Khan, Generalization of Ostrowski Inequality for Differentiable functions and its applications to numerical quadrature rules, J. Math. Anal., 8 (2017), 79-102
##[20]
N. Irshad, A. R. Khan, On Weighted Ostrowski Gruss Inequality with Applications, Transylv. J. Math. Mech., 10 (2018), 15-22
##[21]
N. Irshad, A. R. Khan, A. Nazir, Extension of Ostrowki Type Inequality Via Moment Generating Function, Adv. Inequal. Appl., 2 (2020), 1-15
##[22]
N. Irshad, A. R. Khan, M. A. Shaikh, Generalization of Weighted Ostrowski Inequality with Applications in Numerical Integration, Adv. Ineq. Appl., 7 (2019), 1-14
##[23]
N. Irshad, A. R. Khan, M. A. Shaikh, Generalized Weighted Ostrowski-Gruss Type Inequality with Applications, Global J. Pure Appl. Math., 15 (2019), 675-692
##[24]
O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317
##[25]
D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers Group, Dordrecht (1991)
##[26]
M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech., 5 (2013), 129-136
##[27]
A. Ostrowski, Uber die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227
##[28]
E. Set, S. Karatas, I. Mumcu, Fuzzy Ostrowski type inequalities for $(\alpha, m)$-convex functions, Journal of New theory, 6 (2015), 54-65
##[29]
S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303-311
##[30]
C. X. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120 (2001), 523-532
##[31]
C.-X. Wu, M. Ming, Embedding problem of fuzzy number space: Part I, Fuzzy Sets and Systems, 44 (1991), 33-38
##[32]
Z. G. Xiao, A. H. Zhang, Mixed power mean inequalities, Res. Commun. Inequal., 8 (2002), 15-17
##[33]
X. J. Yang, A note on Hölder inequality, Appl. Math. Comput., 134 (2003), 319-322
]
New types of rough Pythagorean fuzzy UP-filters of UP-algebras
New types of rough Pythagorean fuzzy UP-filters of UP-algebras
en
en
The aim of this paper is to introduce nine types of rough Pythagorean fuzzy sets in UP-algebras and nine types of rough sets in UP-algebras.
Then we study relation of these rough Pythagorean fuzzy sets and new types of Pythagorean fuzzy UP-filter under equivalence (congruence) relation.
Moreover, we will also discuss \(t\)-level subsets of rough Pythagorean fuzzy sets in UP-algebras to study the relationships between rough Pythagorean fuzzy sets and rough sets in UP-algebras which we defined them above.
Finally, we discuss the concept of homomorphisms between IUP-algebras and also study the direct and inverse images of four special subsets.
236
257
A.
Satirad
Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science
University of Phayao
Thailand
akarachai.sa@gmail.com
R.
Chinram
Division of Computational Science, Faculty of Science
Prince of Songkla University
Thailand
ronnason.c@psu.ac.th
P.
Julatha
Department of Mathematics, Faculty of Science and Technology
Pibulsongkram Rajabhat University
Thailand
pongpun.j@psru.ac.th
R.
Prasertpong
Division of Mathematics and Statistics, Faculty of Science and Technology
Nakhon Sawan Rajabhat University
Thailand
rukchart.p@nsru.ac.th
A.
Iampan
Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science
University of Phayao
Thailand
aiyared.ia@up.ac.th
UP-algebra
rough set
rough Pythagorean fuzzy set
\(t\)-level subset
Article.3.pdf
[
[1]
S. S. Ahn, C. Kim, Rough set theory applied to fuzzy filters in BE-algebras, Commun. Korean Math. Soc.,, 31 (2016), 451-460
##[2]
S. S. Ahn, J. M. Ko, Rough fuzzy ideals in BCK/BCI-algebras, J. Comput. Anal. Appl.,, 25 (2018), 75-84
##[3]
M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 1-12
##[4]
M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388-402
##[5]
K. T. Atanassov, Intuitionistic fuzzy sets,, Fuzzy Sets and Systems, 20 (1986), 87-96
##[6]
L. Chen, F. Wang, On rough ideals and rough fuzzy ideals of BCI-algebras, Fifth international conference on fuzzy systems and knowledge discovery, 5 (2008), 281-284
##[7]
R. Chinram, T. Panityakul, Rough Pythagorean fuzzy ideals in ternary semigroups, J. Math. Comput. Sci., 20 (2020), 303-312
##[8]
N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 16 (2018), 171-190
##[9]
T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1-19
##[10]
A. Hussain, T. Mahmood, M. I. Ali, Rough Pythagorean fuzzy ideals in semigroups, Comput. Appl. Math., 38 (2019), 1-15
##[11]
A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5 (2017), 35-54
##[12]
A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., 38 (2018), 297-306
##[13]
A. Iampan, Multipliers and near UP-filters of UP-algebras, J. Discrete Math. Sci. Cryptogr., 24 (2021), 667-680
##[14]
A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math., 13 (2020), 459-471
##[15]
Y. B. Jun, A. Iampan, Comparative and allied UP-filters, Lobachevskii J. Math., 40 (2019), 60-66
##[16]
Y. B. Jun, A. Iampan, Implicative UP-filters, Afr. Mat., 30 (2019), 1093-1101
##[17]
Y. B. Jun, A. Iampan, Shift UP-filters and decompositions of UP-filters in UP-algebras, Missouri J. Math. Sci., 31 (2019), 36-45
##[18]
T. Klinseesook, S. Bukok, A. Iampan, Rough set theory applied to UP-algebras, J. Inform. Optim. Sci., 41 (2020), 705-722
##[19]
R. Moradiana, S. K. Shoarb, A. Radfarc, Rough sets induced by fuzzy ideals in BCK-algebras, J. Intell. Fuzzy Syst., 30 (2016), 2397-2404
##[20]
Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982), 341-356
##[21]
C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54-57
##[22]
A. Satirad, R. Chinram, A. Iampan, Pythagorean fuzzy sets in UP-algebras and approximations, AIMS Math., 6 (2021), 6002-6032
##[23]
A. Satirad, R. Chinram, P. Julatha, A. Iampan, Pythagorean fuzzy implicative/comparative/shift UP-filters of UP-algebras with approximations, Manuscript submitted for publication, ()
##[24]
A. Satirad, R. Chinram, P. Julatha, A. Iampan, Rough Pythagorean fuzzy sets in UP-algebras, Eur. J. Pure Appl. Math., 15 (2022), 169-198
##[25]
A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 403-409
##[26]
A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17-25
##[27]
T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 1-23
##[28]
T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497-517
##[29]
J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12 (2016), 739-756
##[30]
R. R. Yager, Pythagorean fuzzy subsets, Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting (Edmonton, Canada), 2013 (2013), 57-61
##[31]
R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436-452
##[32]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353
]
Expressions and dynamical behavior of solutions of eighteenth-order of a class of rational difference equations
Expressions and dynamical behavior of solutions of eighteenth-order of a class of rational difference equations
en
en
The aim of this work is to obtain the forms of the solutions of the
following nonlinear eighteenth-order difference equations
\[
x_{n+1}=\frac{x_{n-17}}{\pm 1\pm
x_{n-2}x_{n-5}x_{n-8}x_{n-11}x_{n-14}x_{n-17}},\ \ \ \ n=0,1,2,\ldots,
\]
where the initial conditions \(x_{-17},x_{-16},\ldots,x_{0}\) are arbitrary real
numbers. Moreover, we investigate stability, boundedness, oscillation, and
the periodic character of these solutions. Finally, we confirm the results
with some numerical examples and graphs by using Matlab program.
258
269
L. Sh.
Aljoufi
Department of Mathematics, College of Science
Jouf University
Saudi Arabia
lamashuja11@gmail.com
S. A.
Mohammady
Department of Mathematics, College of Science
Department of Mathematics, Faculty of Science
Jouf University
Helwan University
Saudi Arabia
Egypt
senssar@ju.edu.sa
A. M.
Ahmed
Department of Mathematics, Faculty of Science
Al Azhar University
Egypt
ahmedelkb@yahoo.com
Recursive sequence
oscillation
semicycles
stability
periodicity
solutions of difference equations
Article.4.pdf
[
[1]
R. P. Agarwal, Difference equations and inequalities, Marcel Dekker, New York (2000)
##[2]
R. P. Agarwal, E. M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math. (Kyungshang), 17 (2008), 181-201
##[3]
A. M. Ahmed, On the dynamics of a higher-order rational difference equation, Discrete Dyn. Nat. Soc., 2011 (2011), 1-8
##[4]
A. Ahmed, S. Al Mohammady, L. Sh. Aljoufi, Expressions and Dynamical Behavior of Solutions of a Class of Rational Difference Equations of Fifteenth-Order, J. Math. Comput. Sci., 25 (2022), 10-22
##[5]
A. M. Ahmed, H. M. El-Owaidy, A. Hamza, A. M. Youssef, On the recursive sequence $x_{n+1}=\dfrac{a+bx_{n-1}}{A+Bx_{n}^{k}}$, J. Appl. Math. Inform., 27 (2009), 275-289
##[6]
A. M. Ahmed, A. M. Youssef, A solution form of a class of higher-order rational difference equations, J. Egyptian Math. Soc., 21 (2013), 248-253
##[7]
M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176 (2006), 768-774
##[8]
A. M. Amleh, J. Hoag, G. Ladas, A difference equation with eventually periodic solutions, II, Comput. Math. Appl., 36 (1998), 401-404
##[9]
C. Cinar, On the Positive Solutions of the Difference Equation $x_{n+1}=\dfrac{x_{n-1}}{1+x_{n}x_{n-1}}$, Appl. Math. Comput., 150 (2004), 21-24
##[10]
C. Cinar, On the Difference Equation $x_{n+1}=\dfrac{x_{n-1}}{-1+x_{n}x_{n-1}}$, Appl. Math. Comput., 158 (2004), 813-816
##[11]
C. Cinar, On the Positive Solutions of the Difference Equation $x_{n+1}=\dfrac{ax_{n-1}}{1+bx_{n}x_{n-1}}$, Appl. Math. Comput., 156 (2004), 587-590
##[12]
R. Devault, V. L. Kocic, D. Stutson, Global behavior of solutions of the nonlinear difference equation $x_{n+1}=\frac{p_{n}+x_{n-1}}{x_{n}}$, J. Difference Equ. Appl., 11 (2005), 707-719
##[13]
E. M. Elsayed, On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5}}$, Int. J. Contemp. Math. Sci., 3 (2008), 1657-1664
##[14]
E. M. Elsayed, M. M. Alzubaidi, Expressions and dynamical behavior of rational recursive sequences, J. Comput. Anal. Appl., 28 (2020), 67-78
##[15]
E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, Chapman & Hall/CRC Press, Boca Raton (2005)
##[16]
R. Karatas, C. Cinar, D. Simsek, On positive solutions of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5}}$, Int. J. Contemp. Math. Sci., 1 (2006), 495-500
##[17]
V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers Group, Dordrecht (1993)
##[18]
M. R. S. Kulenovic, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapman and Hall/CRC Press, New York (2001)
]
Method of lines and Runge-Kutta method for solving delayed one dimensional transport equation
Method of lines and Runge-Kutta method for solving delayed one dimensional transport equation
en
en
In this article we consider a delayed one dimensional transport equation. The method of lines with Runge-Kutta method is applied to solve the problem. It is proved that the present method is stable and convergence of order \(O(\Delta t+\bar{h}^{4})\). Numerical examples are presented to illustrate the method presented in this article.
270
280
S.
Karthick
Department of Mathematics, Faculty of Engineering and Technology
SRM Institute of Science and Technology
India
karthickmaths007@gmail.com
R.
Mahendran
Department of Mathematics, Faculty of Engineering and Technology
SRM Institute of Science and Technology
India
mahi2123@gmail.com
V.
Subburayan
Department of Mathematics, Faculty of Engineering and Technology
SRM Institute of Science and Technology
India
suburayan123@gmail.com
Stable method
Runge-Kutta method
transport equation
method of lines
Article.5.pdf
[
[1]
A. N. Al-Mutib, Stability properties of numerical methods for solving delay differential equations, J. Comput. Appl. Math., 10 (1984), 71-79
##[2]
D. D. Bainov, Z. Kamont, E. Minchev, Comparison principles for impulsive hyperbolic equations of first order, J. Comput. Appl. Math., 60 (1995), 379-388
##[3]
J. Banasiak, J. R. Mika, Singularly perturbed telegraph equations with applications in the random walk theory, J. Appl. Math. Stochastic Anal., 11 (1998), 9-28
##[4]
A. Bellen, M. Zennaro, Numerical methods for delay differential equations, Oxford University Press, New York (2013)
##[5]
Z. L. Feng, H. R. Thieme, Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803-833
##[6]
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht (1992)
##[7]
E. Hairer, G. Wanner, Solving ordinary differential equations II, Springer, Berlin (1996)
##[8]
H. W. Hethcote, P. van den Driessche, An SIS epidemic model with variable population size and a delay, J. Math. Biol., 34 (1995), 177-194
##[9]
H. W. Hethcote, P. van den Driessche, Two SIS epidemiologic models with delays, J. Math. Biol., 40 (2000), 3-26
##[10]
A. V. Holden, Models of the stochastic activity of neurons, Springer Science and Business Media, Berlin (2013)
##[11]
S. Karthick, V. Subburayan, Finite Difference Methods with Interpolation for First-Order Hyperbolic Delay Differential Equations, In: Differential equations and applications, 2021 (2021), 147-161
##[12]
S. Karthick, V. Subburayan, R. P. Agrwal, Stable Difference Schemes with Interpolation for Delayed One-Dimensional Transport Equation, Symmetry, 14 (2022), 1-18
##[13]
Y. Kuang, Delay Differential Equations with applications in population dynamics, Academic Press, San Diego (1993)
##[14]
H. P. Langtangen, S. Linge, Finite difference computing with PDEs: a modern software approach, Springer, Cham (2017)
##[15]
Z. Li, Z. Qiao, T. Tang, Numerical solution of differential equations: introduction to finite difference and finite element methods, Cambridge University Press, Cambridge (2017)
##[16]
X.-D. Liu, A maximum principle satisfying modification of triangle based adapative stencils for the solution of scalar hyperbolic conservation laws, SIAM J. Numer. Anal., 30 (1993), 701-716
##[17]
J. Loustau, Numerical Differential Equations, World Scientific, Hackensack (2016)
##[18]
S. Mazumder, Numerical methods for partial differential equations, Elsevier/Academic Press, Amsterdam (2015)
##[19]
J. J. H. Miller, E. O’riordan, G. I. Shishkin, Fitted numerical methods for singular perturbation problems, World scientific, New York (1996)
##[20]
M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs (1967)
##[21]
P. Rai, K. K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl., 63 (2012), 118-132
##[22]
M. M. Rana, V. E. Howle, K. Long, A. Meek, A New Block Preconditioner for Implicit Runge–Kutta Methods for Parabolic PDE Problems, SIAM J. Sci. Comput.,, 43 (2021), 475-495
##[23]
K. K. Sharma, P. Singh, Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution, Appl. Math. Comput., 201 (2008), 229-238
##[24]
S. Singh, V. K. Patel, V. K. Singh, Application of wavelet collocation method for hyperbolic partial differential equations via matrices, Appl. Math. Comput., 320 (2018), 407-424
##[25]
P. Singh, K. K. Sharma, Numerical solution of first-order hyperbolic partial differential-difference equation with shift, Numer. Methods Partial Differential Equations, 26 (2010), 107-116
##[26]
G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, New York (1985)
##[27]
H. Smith, An introduction to delay differential equations with applications to the life sciences, Springer, New York (2011)
##[28]
R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J., 5 (1965), 173-194
##[29]
R. B. Stein, Some models of neuronal variability, Biophys. J., 7 (1967), 37-68
##[30]
J. C. Strikwerda, Finite difference schemes and partial differential equations, SIAM, Philadelphia (2004)
##[31]
V. Subburayan, N. Ramanujam, An asymptotic numerical method for singularly perturbed convection-diffusion problems with a negative shift, Neural Parallel Sci. Comput., 21 (2013), 431-446
##[32]
V. Subburayan, N. Ramanujam, An initial value technique for singularly perturbed convection-diffusion problems with a negative shift, J. Optim. Theory Appl., 158 (2013), 234-250
##[33]
E. Suli, D. F. Mayers, An introduction to numerical analysis, Cambridge university press, Cambridge (2003)
##[34]
Y. Takei, Y. Iwata, Numerical Scheme Based on the Implicit Runge-Kutta Method and Spectral Method for Calculating Nonlinear Hyperbolic Evolution Equations, Axioms, 11 (2022), 1-19
##[35]
R. F. Warming, B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. phys., 14 (1974), 159-179
]
A new fifth-order iterative method for solving non-linear equations using weight function technique and the basins of attraction
A new fifth-order iterative method for solving non-linear equations using weight function technique and the basins of attraction
en
en
In this paper, new iterative method is presented of fifth-order for solving non-linear equations \(f\left(x\right)=0\) a devoid of the second derivative which requires two derivative functions and evaluations for each step, using both weight functions and synthesis techniques together. This method improves Newton's method and thus the efficiency index has been improved from \(1.414\) to \(1.495\). The convergence analysis for the new method is discussed. We provide some numerical examples that illustrate the performance of our proposed method by comparing them with numerical methods of fifth-order also the complex dynamics and basins of attraction is discussed, comparing it with several methods of the same order, thus comparisons show that new method gives the best results.
281
293
M. Q.
Khirallah
Department of Mathematics and Computer Science, Faculty of Science
Department of Mathematics, Faculty of Science and Arts
Ibb University
Najran University
Yemen
Saudi Arabia
mqm73@yahoo.com
A. M.
Alkhomsan
Department of Mathematics, Faculty of Science and Arts
Najran University
Saudi Arabia
Nonlinear equations
basins of attraction efficiency index
iterative methods
complex dynamics
Article.6.pdf
[
[1]
C. Andreu, N. Cambil, A. Cordero, J. R. Torregrosa, A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem, Appl. Math. Comput., 232 (2014), 237-246
##[2]
R. L. Burden, J. D. Faires, A. M. Burden, Student Solutions Manual and Study Guide: Numerical Analysis, Cengage Learning, (2016)
##[3]
F. I. Chicharro, N. Garrido, J. R. Torregrosa, Wide stability in a new family of optimal fourth-order iterative methods, Comput. Math. Methods, 3 (2019), 1-14
##[4]
C. B. Chun, M. Y. Lee, B. Neta, J. Dzunic, On optimal fourth-order iterative methods free from second derivative and their dynamics, Appl. Math. Comput., 218 (2012), 6427-6438
##[5]
C. B. Chun, B. Neta, Basins of attraction for several third order methods to find multiple roots of nonlinear equations, Appl. Math. Comput., 268 (2015), 129-137
##[6]
C. B. Chun, B. Neta, The basins of attraction of Murakami’s fifth order family of methods, Appl. Numer. Math., 110 (2016), 14-25
##[7]
L. Fang, L. Sun, G. P. He, An efficient Newton-type method with fifth-order convergence for solving nonlinear equations, Comput. Appl. Math., 27 (2008), 269-274
##[8]
Y. M. Ham, C. B. Chun, A fifth-order iterative method for solving nonlinear equations, Appl. Math. Comput., 194 (2007), 287-290
##[9]
B. Neta, M. Scott, C. B. Chun, Basins of attraction for several methods to find simple roots of nonlinear equations, Appl. Math. Comput., 218 (2012), 10548-10556
##[10]
R. Sharma, Some fifth and sixth order iterative methods for solving nonlinear equations, Int. J. Eng. Res. Appl., 4 (2014), 268-273
##[11]
P. Sivakumar, J. Jayaraman, Some New Higher Order Weighted Newton Methods for Solving Nonlinear Equation with Applications, Math. Comput. Appl., 24 (2019), 1-21
##[12]
B. D. Stewart, Attractor basins of various root-finding methods, Naval Postgraduate School Monterey, CA (2001)
##[13]
D. M. Young, Book Review: Solution of equations and systems of equations, Bull. Amer. Math. Soc., 68 (1962), 306-608
##[14]
X. J. Zhang, F. A. Shah, Y. F. Li, L. Yan, A. Q. Baig, M. R. Farahani, A family of fifth-order convergent methods for solving nonlinear equations using variational iteration technique, J. Inf. Optim. Sci., 39 (2018), 673-694
]
New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms
New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms
en
en
The paper deals with the oscillation of higher order nonlinear differential equations with a nonlinear neutral term. The main results are proved via utilizing an integral criterion as well as a comparison theorem with first-order delay differential equation whose oscillatory properties are known. The proposed theorems improve, extend, and simplify existing ones in the literature. The results are associated with four numerical examples.
294
305
J.
Alzabut
Department of Mathematics and General Sciences
Department of Industrial Engineering
Prince Sultan University
OSTIM Technical University
Saudi Arabia
Turkiye
jalzabut@psu.edu.sa
S. R.
Grace
Department of Engineering Mathematics, Faculty of Engineering
Cairo University
Egypt
G. N.
Chhatria
Department of Mathematics
Sambalpur University
India
Oscillation
asymptotic behavior
neutral differential equation
comparison method
Article.7.pdf
[
[1]
H. A. Abd El-Hamid, H. M. Rezk, A. M. Ahmed, G. AlNemer, M. Zakarya, H. A. El Saify, Some dynamic Hilbert-type inequalities for two variables on time scales, J. Inequal. Appl., 2021 (2021), 1-21
##[2]
R. P. Agarwal, M. Bohner, T. X. Li, C. H. Zhang, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1-6
##[3]
R. P. Agarwal, S. R. Grace, The oscillation of higher-order differential equations with deviating arguments, Comput. Math. Appl., 38 (1999), 185-199
##[4]
R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Anal. Appl., 262 (2001), 601-622
##[5]
R. P. Agarwal, S. R. Grace, D. O’Regan, The oscillation of certain higher-order functional differential equations, Math. Comput. Modelling, 37 (2003), 705-728
##[6]
R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation of certain fourth order functional differential equations, Ukrainian Math. J., 59 (2007), 315-342
##[7]
R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation Theory for Difference and Functional Difference Equations, Springer Science & Business Media, Berlin/Heidelberg (2013)
##[8]
P. Agarwal, A.-A. Hyder, M. Zakarya, Well-posedness of Stochastic modified Kawahara equation, Adv. Difference Equ., 2020 (2020), 1-10
##[9]
G. AlNemer, M. Zakarya, H. A. Abd El-Hamid, M. R. Kenawy, H. M. Rezk, Dynamic Hardy-type inequalities with non-conjugate parameters, Alex. Eng. J., 59 (2020), 4523-4532
##[10]
B. Baculíková, J. Džurina, T. X. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Differ. Equ., 2011 (2011), 1-9
##[11]
M. Bartušek, M. Cecchi, Z. Došlá, M. Marini, Asymptotics for higher order differential equations with a middle term, J. Math. Anal. Appl., 388 (2012), 1130-1140
##[12]
O. Bazighifan, R. A. El-Nabulsi, Different techniques for studying oscillatory behavior of solution of differential equations, Rocky Mountain J. Math., 51 (2021), 77-86
##[13]
O. Bazighifan, O. Moaaz, R. A. El-Nabulsi, A. Muhib, Some new oscillation results for fourth-order neutral differential equations with delay argument, Symmetry, 12 (2020), 1-10
##[14]
C. Cesarano, O. Moaaz, B. Qaraad, N. A. Alshehri, S. K. Elagan, M. Zakarya, New results for oscillation of solutions of odd-order neutral differential equations, Symmetry, 13 (2021), 1-12
##[15]
R. A. El-Nabulsi, A generalized nonlinear oscillator from non-standard degenerate lagrangians and its consequent hamiltonian formalism, Proc. Nat. Acad. Sci. India Sect. A, 84 (2014), 563-569
##[16]
R. A. El-Nabulsi, Non-standard power-law Lagrangians in classical and quantum dynamics, Appl. Math. Lett., 43 (2015), 120-127
##[17]
R. A. El-Nabulsi, Complex backward-forward derivative operator in non-local-in-time Lagrangians mechanics, Qual. Theory Dyn. Syst., 16 (2017), 223-234
##[18]
R. A. El-Nabulsi, Dynamics of pulsatile flows through microtubes from nonlocality, Mech. Res. Commun., 86 (2017), 18-26
##[19]
R. A. El-Nabulsi, Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube, Int. J. Non-Linear Mechanics, 93 (2017), 65-81
##[20]
R. A. El-Nabulsi, O. Moaaz, O. Bazighifan, New results for oscillatory behavior of fourth-order differential equations, Symmetry, 12 (2020), 1-12
##[21]
H. A. Ghany, Abd-Allah Hyder, M. Zakarya, Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives, Chin. Phys. B, 29 (2020), 1-8
##[22]
H. A. Ghany, M. Zakarya, Exact solitary wave solutions for wick-type stochastic (2 + 1)-dimensional coupled KdV equations, J. Comput. Anal. Appl., 29 (2020), 617-633
##[23]
S. R. Grace, J. Džurina, I. Jadlovská, T. X. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 1-13
##[24]
S. R. Grace, J. R. Graef, Oscillatory behavior of second order nonlinear differential equations with a sublinear neutral term, Math. Model. Anal., 23 (2018), 217-226
##[25]
S. R. Grace, J. R. Graef, M. A. El-Beltagy, On the oscillation of third order delay dynamic equations on time scales, Comput. Math. Appl., 63 (2012), 775-782
##[26]
S. R. Grace, J. R. Graef, I. Jadlovska, Oscillation criteria for second-order half-linear delay differential equations with mixed neutral terms, Math. Slovaca, 69 (2019), 1117-1126
##[27]
S. R. Grace, J. R. Graef, E. Tunc, Oscillatory behaviour of second order damped neutral differential equations with distributed deviating arguments, Miskolc Math. Notes, 18 (2017), 759-769
##[28]
J. Graef, S. Grace, E. Tunc, Oscillation criteria for even-order differential equations with unbounded neutral coefficients and distributed deviating arguments, Funct. Differ. Equ., 25 (2018), 143-153
##[29]
J. R. Graef, S. R. Grace, E. Tunc, Oscillatory behaviour of even-order nonlinear differential equations with a sublinear neutral term, Opuscula Math., 39 (2019), 39-47
##[30]
S. R. Grace, I. Jadlovska, Oscillatory behavior of odd order nonlinear differential equations with a nonpositive neutral term, Dyn. Syst. Appl., 27 (2018), 125-136
##[31]
J. R. Graef, M. K. Grammatikopoulos, P. W. Spikes, On the asymptotic behavior of solutions of a second order nonlinear neutral delay differential equation, J. Math. Anal. Appl., 156 (1991), 23-39
##[32]
J. R. Graef, C. Qian, B. Yang, A three point boundary value problem for nonlinear fourth order differential equations, J. Math. Anal. Appl., 287 (2003), 217-233
##[33]
J. R. Graef, P. W. Spikes, On the oscillation of an nth-order nonlinear neutral delay differential equation, J. Comput. Appl. Math., 41 (1992), 35-40
##[34]
G. Gupta, M. Massoudi, Flow of a generalized second grade fluid between heated plates, Acta Mechanica, 99 (1993), 21-33
##[35]
G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge (1934)
##[36]
T. Hayat, Y. Wang, A. M. Siddiqui, K. Hutter, S. Asghar, Peristaltic transport of a third-order fluid in a circular cylindrical tube, Math. Models Methods Appl. Sci., 12 (2002), 1691-1706
##[37]
D. B. Ingham, B. Yan, Fluid flow induced by a small amplitude harmonically oscillating cascade, Acta Mechanica, 91 (1992), 27-46
##[38]
K. Kamo, H. Usami, Nonlinear oscillations of fourth Order quasilinear ordinary Differential equations, Acta Math. Hungar., 132 (2011), 207-222
##[39]
I. T. Kiguradze, On the oscillatory character of solutions of the equation $dmu/dtm + a(t)|u| n \;sign\; u = 0$, Mat. Sb. (N.S.), 65 (1964), 172-187
##[40]
M. M. Kipnis, D. A. Komissarova, A note on explicit stability conditions for autonomous higher order difference equations, J. Difference Equ. Appl., 13 (2007), 457-461
##[41]
Y. Kitamura, T. Kusano, Oscillation of first order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc., 78 (1980), 64-68
##[42]
R. G. Koplatadze, T. A. Chanturiya, Oscillating and monotone solutions of first-order differential equations with deviating argument, (Russian), Differentsial’nye Uravneniya, 18 (1982), 1463-1465
##[43]
W. N. Li, Oscillation of higher order delay differential equations of neutral type, Georgian Math. J., 7 (2000), 347-353
##[44]
T.-X. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35-41
##[45]
T. X. Li, Y. V. Rogovchenko, Oscillation criteria for second–order superlinear Emden–Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489-500
##[46]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Behavior of non-oscillatory solutions of fourth-order neutral differential equations, Symmetry, 12 (2020), 1-12
##[47]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry, 12 (2020), 1-8
##[48]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, A. Muhib, New comparison theorems for the even-order neutral delay differential equation, Symmetry, 12 (2020), 1-11
##[49]
O. Moaaz, R. A. El-Nabulsi, A. Muhib, S. K. Elagan, M. Zakarya, New improved results for oscillation of fourth-order neutral differential equations, Mathematics, 9 (2021), 1-12
##[50]
M. Naito, F. Wu, A note on the existence and asymptotic behavior of nonoscillatory solutions of fourth order quasilinear differential equations, Acta Math. Hungar., 102 (2004), 177-202
##[51]
N. Parhi, A. K. Tripathy, On oscillatory fourth order nonlinear neutral differential equations-I, Math. Slovaca, 54 (2004), 389-410
##[52]
C. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty$ for differential equations with positive delays, Arch. Math. (Basel), 36 (1981), 168-178
##[53]
H. M. Rezk, G. AlNemer, H. A. Abd El-Hamid, A. H Abdel-Aty, K. S. Nisar, M. Zakarya, Hilbert-type inequalities for time scale nabla calculus, Adv. Difference Equ., 2020 (2020), 1-21
##[54]
Y. Sun, Z. Han, S. Sun, C. Zhang, Oscillation criteria for even order nonlinear neutral differential equations, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 1-12
##[55]
P. G. Wang, W. Y. Shi, Oscillatory theorems of a class of even-order neutral equations, Appl. Math. Lett., 16 (2003), 1011-1018
##[56]
Y. Wang, W. Wu, Unsteady flow of a fourth-grade fluid due to an oscillating plate, Int. J. Non-Linear Mechanics, 42 (2007), 432-441
##[57]
W. M. Xiong, G. G. Yue, Almost periodic solutions for a class of fourth-order nonlinear differential equations with a deviating argument, Comput. Math. Appl., 60 (2010), 1184-1190
##[58]
J. L. Yao, F. W. Meng, Asymptotic behavior of solutions of certain higher order nonlinear difference equation, J. Comput. Appl. Math., 205 (2007), 640-650
##[59]
A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett., 11 (1998), 21-25
##[60]
M. Zakarya, Hypercomplex Systems and Non-Gaussian Stochastic solutions of $\chi$- wick type $(3+1)$-dimensional modified Benjamin-Bona-Mahony Equation, Thermal Science, 24 (2020), 209-223
##[61]
Q. Zhang, J. Yan, L. Gao, Oscillation behaviour of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl., 59 (2010), 426-430
]
On bi-topological BCK-algebras
On bi-topological BCK-algebras
en
en
In this paper, we present the concept of bi-topological BCK-algebra. Several characterizations and properties of this concept are obtained. Also, the concept of BCK-ideal of a BCK-algebra is defined and some of its properties are found.
306
315
R. A.
Mohammed
Department of Mathematics, College of Basic Education
University of Duhok
Iraq
Gh. H.
Rasheed
Department of Mathematics, College of Basic Education
University of Duhok
Iraq
A. B.
Khalaf
Department of Mathematics, College of Science
University of Duhok
Iraq
aliasbkhalaf@uod.ac
BCK-algebra
bi-topological BCK-algebra
BCK-ideal
Article.8.pdf
[
[1]
R. A. Alo, E. Y. Deeba, Topologies of BCK-algebras, Math. Japon., 31 (1986), 841-853
##[2]
K. E. Belleza, J. P. Vilela, On B-ideals in a topological B-algebra and the uniform B-topological space, Eur. J. Pure Appl. Math., 13 (2020), 830-839
##[3]
R. A. Borzooei, M. Bakhshi, The lattice structure of ideals of a BCK-algebra, J. Mult.-Valued Logic Soft Comput., 18 (2012), 387-399
##[4]
A. Dvurečenskij, S. Pulmannová, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht (2000)
##[5]
R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa (1977)
##[6]
N. C. Gonzaga, Analyzing Some Structural Properties of Topological B-Algebras, Int. J. Math. Math. Sci., 2019 (2019), 1-7
##[7]
Y. Imai, K. Iseki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19-22
##[8]
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29
##[9]
Y. B. Jun, X. L. Xin, D. S. Lee, On Topological BCI-Algebras, Inform. Sci., 116 (1999), 253-261
##[10]
J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3), 13 (1963), 71-89
##[11]
D. S. Lee, D. N. Ryu, Notes on topological BCK-algebras, Sci. Math., 1 (1998), 231-235
##[12]
S. Mehrshad, J. Golzarpoor, On topological BE-algebras, Math. Morav., 21 (2017), 1-13
##[13]
J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994)
##[14]
A. Satirad, A. Iampan, Topological UP-algebras, Discuss. Math. Gen. Algebra Appl., 39 (2019), 231-250
##[15]
Q. Zhang, C. L. Mi, X. C. Wang, Y. H. Cui, Y. L. Zhang, Negative implicative BCK-algebras, Proceedings of Annual Conference of China Institute of Communications, 2010 (2010), 273-276
]