]>
2011
3
3
78
Approximate Solution of a Class of Nonlinear Volterra Integral Equations
Approximate Solution of a Class of Nonlinear Volterra Integral Equations
en
en
In this paper we introduce an approach by an optimization method to find approximate solution for a class of nonlinear Volterra integral equations of the first and second kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.
278
286
Hamid Reza
Erfanian
Touraj
Mostahsan
Volterra integral equation
Optimal control
Measure theory
Nonlinear and linear programming.
Article.1.pdf
[
[1]
C. T. H. Baker, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford (1977)
##[2]
C. T. H. Baker, A perspective on the numerical treatment of Volterra equations, Journal of Computational and Applied Mathematics, 125 (2000), 217-249
##[3]
H. Basirzadeh, A. V. Kamyad, S. Effati, AN Approach for Solving Nonlinear Programming Problems, Korean J. Comput. Appl. Math., 9 (2002), 547-560
##[4]
M. I. Berenguer, D. Gamez, A. I. Garralda-Guillem, M. C. Serrano Perez, Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems, Abstract and Applied Analysis, 2010 (2010), 1-11
##[5]
A. H. Borzabadi, A. V. Kamyad, H. H. Mehne, A different approach for solving the nonlinear Fredholm integral equations of the second kind, Applied Mathematics and Computation, 173 (2006), 724-735
##[6]
H. Brunner, P. J. Van der Houwen, The Numerical Solution of Volterra Equations, Elsevier Science Ltd., Amsterdam (1986)
##[7]
L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge (1985)
##[8]
A. J. Jerri, Introduction to Integral Equations with Applications, John Wiley & Sons, London (1999)
##[9]
M. Rahman, Integral Equations and their Applications, WIT press, Southampton (2007)
##[10]
J. E. Rubio, Control and Optimization, the Linear Treatment of Non-linear Problems, Manchester University Press, Manchester (1986)
##[11]
H. Tian , Spectral Methods for Volterra Integral Equations, Doctoral dissertation (Simon Fraser University), Canada (1995)
]
Homomorphism ff Intuitionistic \((\alpha, \beta)\)-fuzzy \(H_v\)- Submodule
Homomorphism ff Intuitionistic \((\alpha, \beta)\)-fuzzy \(H_v\)- Submodule
en
en
The notion of intuitionistic fuzzy sets was introduced by Atanassov as a
generalization of the notion of fuzzy sets. Using the notion of ”belongingness (\(\in\)) ”
and ”quasi-coincidence (q) ” of fuzzy points with fuzzy sets, we introduce the
concept of an intuitionistic \((\alpha, \beta)\)-fuzzy \(H_v\)-submodule of an \(H_v\)-modules,
where \(\alpha\in \{\in , q\},\beta\in\{\in,q,\in\vee q,\in\wedge q\}\) . The concept of a homomorphism of
intuitionistic \((\alpha, \beta)\)-fuzzy \(H_v\)-submodule is considered, and some interesting
properties are investigated.
287
300
M.
Asghari-Larimi
Hyperstructure
Fuzzy set
Intuitionistic fuzzy set
\(H_v\)-Module
Intuitionistic \((\alpha،\beta )\)-fuzzy \(H_v\) -submodule
Sup property.
Article.2.pdf
[
[1]
M. Asghari-Larimi, B. Davvaz, Hyperstructures associated to arithmetic functions, Ars Combitoria, 97 (2010), 51-63
##[2]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96
##[3]
K. T. Atanassov, Two operators on intuitionistic fuzzy sets, Comptes rendus de l’Academi buloare des Sciences, Tome, 41 (1988), 35-38
##[4]
K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994), 137-142
##[5]
K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33 (1989), 37-45
##[6]
K. T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, New York (1999)
##[7]
R. Biswas, Intuitionistic fuzzy subgroups, Math. Forum, 10 (1989), 37-46
##[8]
S. K. Bhakat, \((\in\vee q)\) -level subset, Fuzzy Sets and Systems, 103 (1999), 529-533
##[9]
S. K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992), 235-241
##[10]
S. K. Bhakat, P. Das, \((\in,\in\vee q)\)-fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996), 359-368
##[11]
S. K. Bhakat, P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81 (1996), 383-393
##[12]
P. Burillo, H. Bustince, Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets and Systems, 84 (1996), 271-281
##[13]
H. Bustince, P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, 78 (1996), 293-303
##[14]
P. Corsini , A new connection between hypergroups and fuzzy sets. Southeast, Asian Bull. Math., 27 (2003), 221-229
##[15]
P. Corsini, Prolegomena of hypergroup theory, Aviani editore, Italy (1993)
##[16]
P. Corsini , Join spaces, power sets, fuzzy sets, Algebraic hyperstructures and applications, Hadronic Press , Palm Harbor (1994)
##[17]
P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Dordrecht (2003)
##[18]
I. Cristea, B. Davvaz, Atanassovs intuitionistic fuzzy grade of hypergroups, Inform. Sci., 180 (2010), 1506-1517
##[19]
B. Davvaz, Fuzzy \(H_v\) -submodules, Fuzzy Sets and Systems, 117 (2001), 477-484
##[20]
B. Davvaz, \((\in,\in\vee q)\)-fuzzy subnearrings and ideals, Soft Computing, 10 (2006), 206-211
##[21]
B. Davvaz, P. Corsini, \((\alpha, \beta)\)-Fuzzy \(H_v\)-Ideals of \(H_v\)-Rings, Iranian Journal of Fuzzy Systems, 5 (2008), 35-47
##[22]
B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and Applications, International Academic Press, U.S.A. (2007)
##[23]
B. Davvaz, W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy \(H_v\)-submodules, Inform. Sci., 176 (2006), 285-300
##[24]
W. A. Dudek, B. Davvaz, Y. B. Jun, On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Inform. Sci., 170 (2005), 251-262
##[25]
Y. B. Jun, S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci., 176 (2006), 3079-3093
##[26]
F. Marty, Sur une generalization de la notion de groupe, 8th congress Math. Scandinaves, 1934 (1934), 45-49
##[27]
P. M. Pu, Y. M. Liu, Fuzzy topology I: Neighourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599
##[28]
M. Shabir, Y. B. Jun, Y. Nawaz, Characterizations of regular semigroups by \((\alpha, \beta)\)-fuzzy ideals, Computers and Mathematics with Applications, 59 (2010), 161-175
##[29]
T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Palm Harber (1994)
##[30]
X. H. Yuan, H. X. Li, E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, Computers and Mathematics with Applications, 59 (2010), 3117-3129
##[31]
L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353
]
\(\phi\) Pseudo \( \tilde{W}_4\) Flat Lp-Sasakian Manifolds
\(\phi\) Pseudo \( \tilde{W}_4\) Flat Lp-Sasakian Manifolds
en
en
The object of the present paper is to study pseudo \( \tilde{W}_4\) curvature
tensor in a Lorentzian para-Sasakian manifolds.
301
305
Amit
Prakash
LP-Sasakian manifold
pseudo \( \tilde{W}_4\) curvature tensor
pseudo \( \tilde{W}_4\) conservative
\(\phi\)-pseudo \( \tilde{W}_4\) at
\(\eta\)-Einstein manifold.
Article.3.pdf
[
[1]
J. L. Cabrerizo, L. M. Fernandez, M. Fernandez, G. Zhen, The structure of a class of k-contact manifolds, Acta Math. Hungar., 82 (1999), 331-340
##[2]
L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1926 (1926), 82-91
##[3]
N. J. Hicks, Notes on Differential Geometry, Affiliated East-West Press Private Limited, 1969 (1969), -
##[4]
Q. Khan, On an Einstein projective Sasakian manifold, Novi Sad J. Math., 36 (2006), 97-102
##[5]
K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. (Nat. Sci.), 12 (1989), 151-156
##[6]
K. Matsumoto, I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor, 47 (1988), 189-197
##[7]
I. Mihai, A. A. Shaikh, U. C. De, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences, 6 (1999), 1-13
##[8]
R. S. Mishra, Structure on a differentiable manifold and their applications, Chandrama Prakashan, Allahabad (1984)
##[9]
C. Özgür, \(\phi\)-conformally at LP-Sasakian manifolds, Radovi matematicki, 12 (2003), 99-106
##[10]
B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 94 (2002), 163-166
##[11]
B. Prasad, S. Narain, A. Mourya , A pseudo \( \tilde{W}_4\) curvature tensor on a Riemannian manifold, Acta Math. Cincia , 2008 (2008)
##[12]
D. Narain, A. Prakash, B. Prasad, A pseudo projective curvature tensor on an Lorentzian para-Sasakian manifold, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (NS), 55 (2009), 275-284
##[13]
G. P. Pokhariyal, Curvature tensor and their relativistic significance III, Yokohama Mathematical Journal, 20 (1973), 115-119
]
Weak and Strong Convergence Theorems of a New Iterative Process with Errors for Common Fixed Points of a finite Families of Asymptotically Nonexpansive Mappings in the Intermediate Sense in Banach Spaces
Weak and Strong Convergence Theorems of a New Iterative Process with Errors for Common Fixed Points of a finite Families of Asymptotically Nonexpansive Mappings in the Intermediate Sense in Banach Spaces
en
en
In this paper we study the weak and strong convergence results for a new multi-step iterative
scheme with errors to a common fixed point for a finite family of asymptotically nonexpansive mappings
in the intermediate sense in a uniformly convex Banach space. Our results generalize a number
of results.
306
317
S.
Banerjee
B. S.
Choudhury
Multi-step iterative process with errors
Asymptotically nonexpansive mappings in the intermediate sense
Opial’s condition
Kadec-klee property
uniformly convex Banach space
common fixed point
Condition \((\bar{B})\)
weak and strong convergence.
Article.4.pdf
[
[1]
R. E. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with uniform Opial property, Colloq. Math., 65 (1993), 169-179
##[2]
C. E. Chidume, A. Bashir, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 330 (2007), 377-387
##[3]
J. G. Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convrgence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 43 (2001), 377-401
##[4]
K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174
##[5]
W. Kaczor , Weak convergence of almost orbits of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 272 (2002), 565-574
##[6]
A. Kettapun, A. Kananthai, S. Suantai, A new approximation method for common fixed points of a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, Comput. Math. Appl., 60 (2010), 1430-1439
##[7]
A. R. Khan, A. A. Domlo, H. Fukhar-ud-din, Common fixed point Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 341 (2008), 1-11
##[8]
G. E. Kim, T. H. Kim, Mann and Ishikawa iterations with errors for non-Lipschitzian mappings in Banach spaces, Comput. Math. Appl., 42 (2001), 1565-1570
##[9]
W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., 17 (1974), 339-346
##[10]
Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597
##[11]
S. Plubtieng, R. Wangkeeree, Strong convergences theorems for multi-step Noor iterations with errors in Banach spaces, J. Math. Anal. Appl., 321 (2006), 10-23
##[12]
J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1991), 407-413
##[13]
J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., 43 (1991), 153-159
##[14]
H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375-380
##[15]
K. K. Tan, H. K. Hu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308
##[16]
B. L. Xu, M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267 (2002), 444-453
]
Solving Linear Programming Problem with Fuzzy Right Hand Sides a Penalty Method
Solving Linear Programming Problem with Fuzzy Right Hand Sides a Penalty Method
en
en
Linear programming problems with trapezoidal fuzzy variables (FVLP) have recently attracted
some interest. Some methods have been developed for solving these problems. Fuzzy
primal and dual simplex algorithms have been recently proposed to solve these problems.
These methods have been developed with the assumption that an initial Basic Feasible Solution
(BFS) is at hand. In many cases, finding such a BFS is not straightforward and some
works may be needed to get the simplex algorithm started. In this paper, we propose a
penalty method to solve FVLP problems in which the BFS is not readily available.
318
328
S. H.
Nasseri
Z.
Alizadeh
Article.5.pdf
[
[1]
M. S. Bazarra, J. J. Jarvis, H. D. Sherali, Linear Programming and Network Flows, John Wiley & Sons, New York (1990)
##[2]
R. E. Bellman, L. A. Zadeh, Decision making in a fuzzy environment, Manag. Sci., 17 (1970), 141-164
##[3]
G. B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, John Wiley & Sons, 1951 (1951), 339-347
##[4]
G. B. Dantzig, Programming in a linear structure, Standord University Press, Standord (1948)
##[5]
D. Dubois, H. Prade, Fuzzy sets and systems: theory and applications, Academic Press, New York (1980)
##[6]
A. Ebrahimnejad, S. H. Nasseri, S. M. Mansourzadeh, Bounded Primal Simplex Algorithm for Bounded Linear Programming with Fuzzy Cost Coeficients, International Journal of Operations Research and Information Systems, 2 (2011), 96-120
##[7]
B. Khabiri, S. H. Nasseri, Z. Alizadeh, Starting fuzzy solution for the fuzzy primal simplex algorithm using a fuzzy two-phase method, 5th International Conference on fuzzy Information and Engineering (ICFIE), Chengdu (2011)
##[8]
N. Mahdavi-Amiri, S. H. Nasseri, Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables, Fuzzy Sets and Systems, 158 (2007), 1961-1978
##[9]
N. Mahdavi-Amiri, S. H. Nasseri, Duality in fuzzy number linear programming by use of a certain linear ranking function, Applied Mathematics and Computation, 180 (2006), 206-216
##[10]
N. Mahdavi-Amiri, S. H. Nasseri, A. Yazdani, Fuzzy primal simplex algorithms for solving fuzzy linear programming problems, Iranian Journal of Operational Research, 1 (2009), 68-84
##[11]
R. R.Yager, A procedure for ordering fuzzy subsets of the unit interval, Inform. Sci., 24 (1981), 143-161
##[12]
H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1 (1978), 45-55
]
A Priority Scheduler Based Qos for Dynamic Source Routing Protocol Using Fuzzy Logic in Mobile Ad-Hoc Network
A Priority Scheduler Based Qos for Dynamic Source Routing Protocol Using Fuzzy Logic in Mobile Ad-Hoc Network
en
en
Mobile ad hoc network is an autonomous system of mobile nodes characterized by wireless links. A wireless Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration, in which all nodes potentially contribute to the routing process.
In this paper we design a fuzzy-based priority scheduler to determine the priority of the packets. We analyze packet scheduling algorithm to find those that most improve performance in congested network. Hence, a scheduling algorithm to schedule the packet based on their priorities will improve the performance of the network. Packet schedulers in wireless ad hoc networks serve data packets in FIFO order. Here, we present a fuzzy based priority scheduler for mobile ad-hoc networks, to determine the priority of the packets using Destination Sequenced Distance Vector (DSRs) as the routing protocols. The performance of this scheduler has been studied using OPNET simulator and measured such as packet delivery ratio, end-to-end delay and throughput. It is found that the scheduler provides overall improvement in the performance of the system when evaluated under different load and mobility conditions.
329
338
Saber
Ghasempour
Seyed Hossein
Kamali
Maysam
Hedayati
Reza
Shakerian
Scheduling Algorithms
Fuzzy Logic
DSR
OPNET
MANET.
Article.6.pdf
[
[1]
C. Gomathy, S. Shanmugavel, Implementation of modified Fuzzy Priority Scheduler for MANET and performance analysis with mixed traffic, Proc. 11th National Conference on Communication (NCC’05), India (2005)
##[2]
V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, E. Knightly, Distributed priority scheduling and medium access in ad hoc networks, Wireless Networks, 8 (2002), 455-466
##[3]
S. Radha, S. Shanmugavel, L. Hemalatha, S. Kavitha, T. Lakshmi, Multicasting in ad hoc networks using NTP protocol, Proceedings of the 15th international conference on Computer communication, International Council for Computer Communication, 2002 (2002), 144-160
##[4]
C. Gomathy, S. Shanmugavel, Fuzzy based Priority Scheduler for mobile ad hoc networks, Proc. 3rd International Conference on Networking (ICN’04), February–March (2004)
##[5]
C. Gomathy, S. Shanmugavel, Supporting QoS in MANET by Fuzzy Priority Scheduler and Performance Analysis with Multicast Routing Protocols, EURASIP Journal on Wireless Communication and Networking, 3 (2005), 426-436
##[6]
K. Manoj, S. C. Sharma, S. Vijay, A. Dixit, Performances analysis of wireless Ad-hoc network using OPNET simulator, International Conference on" Intelligent Systems and Networks" (ISN-08) ISTK Haryana, 2008 (2008), 267-270
##[7]
B. G. Chun, M. Baker, Evaluation of packet scheduling algorithms in mobile ad hoc networks, ACM SIGMOBILE Mobile Computing and Communications Review, 6 (2002), 36-49
##[8]
S. Chen, K. Nahrsted, Distributed Quality of Service Routing in Ad-hoc Networks, IEEE Journal on Selected areas in Communications, 17 (1999), 1488-1505
##[9]
E. M. Royer, T. C. Keong, A Review of current Routing protocols for Ad-hoc Networks, IEEE Communications, 6 (1999), 46-55
##[10]
S. A. Chen, K. Nahtstedt, Distributed quality-of-service routing in ad hoc networks, IEEE Journal on Selected areas in Communications, 17 (1999), 1458-1504
##[11]
D. B. Johnson, Routing in Ad-hoc networks of mobile hosts, Proceedings of IEEE workshop on Mobile Computing System and Application, 1994 (1994), 158-163
##[12]
http://www.computing.surrey.ac.uk/courses/cs364/FuzzyLogicFuzzySystems 3.ppt., , , ()
]
A Note on the Existence of Positive Solution for a Class of Laplacian Nonlinear System with Sign-changing Weight
A Note on the Existence of Positive Solution for a Class of Laplacian Nonlinear System with Sign-changing Weight
en
en
This study concerns the existence of positive solution for the system
\[
\begin{cases}
-\Delta u=\lambda a(x)f(v),\,\,\,\,\, x\in\Omega,\\
-\Delta v=\lambda b(x)g(u),\,\,\,\,\, x\in\Omega,\\
u=v=0,\,\,\,\,\, x\in \partial \Omega.
\end{cases}
\]
where \(\lambda>0\) is a parameter, \(\Omega\) is a bounded domain in \(R^N(N > 1)\) with smooth boundary
\(\partial\Omega\) and \(\Delta\) is the Laplacian operator. Here \(a(x)\) and \(b(x)\) are \(C^1\) sign-changing functions
that maybe negative near the boundary and \(f, g\) are \(C^1\) nondecresing functions such that
\(f; g : [0;\infty) \rightarrow [0;\infty) ; f(s), g(s) > 0 ; s > 0\) and
\[\lim_{x\rightarrow\infty}\frac{f(Mg(x))}{x}=0\] ; for every \(M > 0\):
We discuss the existence of positive solution when \(f, g, a(x)\) and \(b(x)\) satisfy certain
additional conditions. We use the method of sub-super solutions to establish our results.
339
345
S. H.
Rasouli
Z.
Halimi
Z.
Mashhadban
Laplacian system
Sign-changing weight.
Article.7.pdf
[
[1]
G. A. Afrouzi, S. H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 445-455
##[2]
G. A. Afrouzi, S. H. Rasouli, A remark on the linearized stability of positive solutions for systems involving the p-Laplacian, Positivity, 11 (2007), 351-356
##[3]
J. Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parameters, J. Math. Anal. Appl., 335 (2007), 1013-1019
##[4]
J. Ali, R. Shivaji, An existence result for a semipositone problem with a sign-changing weight, Abstr. Appl. Anal., 5 pages, (2006)
##[5]
J. Ali, R. Shivaji, M. Ramaswamy, Multiple positive solutions for a class of elliptic systems with combined nonlinear effects, Differential and Integral Equations, 19 (2006), 669-680
##[6]
P. Drábek, J. Gámez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc., 349 (1997), 4231-4249
##[7]
M. Delgado, A. Suarez, On the existence and multiplicity of positive solutions for indefinite nonlinear eigenvalue problems, Proc. Amer. Math. Soc., 132 (2004), 1721-1728
##[8]
P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonlinear Anal., 44 (2001), 189-204
##[9]
D. D. Hai, On a class of sublinear quasilinear elliptic problems, Proc. Amer. Math. Soc., 131 (2003), 2409-2414
##[10]
D. D. Hai, R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh, 134 (2004), 137-141
##[11]
B. Ko, K. J. Brown, The existence of positive solutions for a class of indenite weight semilinear elliptic boundary value problems, Nonlinear Analysis-Series A Theory and Methods and Series B Real World Applications, 39 (2000), 587-597
##[12]
A. Leung, Systems of nonlinear partial differential equations, Kluwer Academic Publishers, Dordrecht (1989)
##[13]
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer Science & Business Media, New York (1992)
]
Optimal Solution for System of Kth-order Fuzzy Differential Equations
Optimal Solution for System of Kth-order Fuzzy Differential Equations
en
en
To solving fuzzy control problems ,classical method are not usually
efficient .In this paper we proposed a new approach for solving this
class of problem by linear programming problems(LPP).First we
transfer the original problem to a new problem in form of calculus of
variations. Then we discretize the new problem and solve it by using
LPP packages Finally, efficiency of our approach is confirmed by
some numerical example.
346
356
F.
Nobakht
A. V.
Kamyad
Gh.
Atazandi
A.
Zare
Fuzzy differential equations
AVK method
Numerical method
optimal control.
Article.8.pdf
[
[1]
K. P. Badakhshan, A.V. Kamyad, A. Azemi, Using AVK method to solve nonlinear problems with uncertain parametes, Applied Mathematics and Computation, Vol. 189, 27--34, (2007)
##[2]
T. Allahviranloo, N. Ahmady, E. Ahmady, Two step method for fuzzy differentional equations, International mathematical forum, 1 (2006), 823-832
##[3]
M. Ma, M. Friedman, A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 113-138
##[4]
J. J. Buckley, E. Eslami, An Introduction to Fuzzy Logic and Fuzzy Sets, Springer, Berlin (2001)
##[5]
S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330
##[6]
A. Heydari, A. V. Kamyad, M. H. Farahi, A new approach for solving robust control problem, J. Inst. Math. Comput. Sci., 15 (2002), 1-7
##[7]
A. Zare, A. K. Sedigh, A. V. Kamyad, Applied measure theory in robust tracking, Mag. EECI, 1 (2002), 11-17
##[8]
S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Transactions on Systems, Man, and Cybernetics, 1 (1972), 30-34
##[9]
D. Dubois, H. Prade, Towards fuzzy differential calculus, Fuzzy Sets and Systems, 8 (1982), 225-233
##[10]
M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., Vol. 91, 552--558, (1983)
##[11]
O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35 (1990), 389-396
##[12]
S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330
##[13]
M. Friedman, M. Ma, A. Kandel, Numerical solution of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106 (1999), 35-48
##[14]
M. Ma, M. Frriedman, A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 133-138
##[15]
T. Allahviranloo, N. Ahmady, E. Ahmady, Two step method for fuzzy differential equatios, International Mathematical Forum, 1 (2006), 823-832
]