]>
2024
33
3
108
Superlinear distributed deviating arguments to study second-order neutral differential equations
Superlinear distributed deviating arguments to study second-order neutral differential equations
en
en
The main aim of this paper is to obtain new criteria for oscillating all solutions of second-order differential equations with distributed deviating arguments and superlinear neutral terms. Using the comparative and integral averaging techniques, we find new conditions for oscillation that generalize and add to some of the already found results. There are examples to show how important the main results are.
217
224
M.
Vijayakumar
Department of Mathematics
SRM Institute of Science and Technology
India
vm9233@srmist.edu.in
S. K.
Thamilvanan
Department of Mathematics
SRM Institute of Science and Technology
India
tamilvas@srmist.edu.in
B.
Sudha
Department of Mathematics
SRM Institute of Science and Technology
India
sudhab@srmist.edu.in
Sh. S.
Santra
Department of Mathematics
JIS College of Engineering
India
shyamsundar.santra@jiscollege.ac.in
D.
Baleanu
Department of Computer Science and Mathematics
Institute of Space Sciences
Lebanese American University
Magurele-Bucharest
Lebanon
Romania
dumitru.baleanu@gmail.com
Superlinear neutral term
distributed deviating argument
second-order
oscillation
Article.1.pdf
[
[1]
R. P. Agarwal, M. Bohner, W.-T. Li, Nonoscillation and oscillation theory for functional differential equations, Marcel Dekker, New York (2004)
##[2]
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput., 225 (2013), 787-794
##[3]
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1-6
##[4]
R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178-181
##[5]
J. Alzabut, S. R. Grace, J. M. Jonnalagadda, S. S. Santra, B. Abdalla, Higher-order nabla difference equations of arbitrary order with forcing, positive and negative terms: non-oscillatory solutions, Axioms, 12 (2023), 1-14
##[6]
B. Bacul´ıkov´a, J. Dˇzurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472-4478
##[7]
O. Bazighifan, S. S. Santra, Second-order differential equations: Asymptotic behavior of the solutions, Miskolc Math. Notes, 23 (2022), 105-115
##[8]
M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72-76
##[9]
M. Bohner, B. Sudha, K. Thangavelu, E. Thandapani, Oscillation criteria for second-order differential equations with superlinear neutral term, Nonlinear Stud., 26 (2019), 425-434
##[10]
T. Candan, Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments, Appl. Math. Comput., 262 (2015), 199-203
##[11]
A. Columbu, S. Frassu, G. Viglialoro, Refined criteria toward boundedness in an attraction–repulsion chemotaxis system with nonlinear productions, Appl. Anal., 103 (2024), 415-431
##[12]
J. Dˇzurina, S. R. Grace, I. Jadlovsk´a, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910-922
##[13]
E. M. Elabbasy, T. S. Hassan, O. Moaaz, Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments, Opuscula Math., 32 (2012), 719-730
##[14]
S. R. Grace, J. Alzabut, K. Abodaych, Oscillation theorems for higher order dynamic equations with superlinear neutral term, AIMS Math., 6 (2021), 5493-5501
##[15]
I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, Oxford (1991)
##[16]
C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, M. Altanji, Oscillation result for half-linear delay difference equations of second-order, Math. Biosci. Eng., 19 (2022), 3879-3891
##[17]
Y. Kitamura, T. Kusano, Oscillation of first-order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc., 78 (1980), 64-68
##[18]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 1-21
##[19]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1-18
##[20]
T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150-1162
##[21]
T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35-41
##[22]
T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489-500
##[23]
T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53-59
##[24]
T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 1-7
##[25]
T. Li, Y. V. Rogovchenko, C. Zhang, Oscillation of second-order neutral differential equations, Funkcial. Ekvac., 56 (2013), 111-120
##[26]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315-336
##[27]
F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291-16307
##[28]
O. Moaag, New criteria for oscillation of nonlinear neutral differential equations, Adv. Difference Equ., 2019 (2019), 1-11
##[29]
C. Muthamilarasi, S. S. Santra, G. Balasubramanian, V. Govindan, R. A. El-Nabulsi, K. M. Khedher, The stability analysis of A-Quartic functional equation, Mathematics, 9 (2021), 1-16
##[30]
S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237-22255
##[31]
B. Sudha, R. Rama, E. Thandapani, Oscillation of second order sublinear neutral differential equations with distributed deviating arguments, Int. J. Math. Engg. & Math. Sci., (), -
##[32]
X. H.Tang, Oscillation for first order superlinear delay differential equations, J. London Math. Soc. (2), 65 (2002), 115-122
##[33]
E. Tunc¸, O. O¨ zdemir, Oscillatory behavior of second-order damped differential equations with a superlinear neutral term, Opuscula Math., 40 (2020), 629-639
##[34]
P. G. Wang, Oscillation criteria for second-order neutral equations with distributed deviating arguments, Comput. Math. Appl., 47 (2004), 1935-1946
##[35]
Z. Xu, P. Weng, Oscillation of second-order neutral equations with distributed deviating argument, J. Comput. Appl. Math., 202 (2007), 460-477
##[36]
C. Zhang, T. Li, B. Sun, E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618-1621
##[37]
J. Zhao, F. Meng, Oscillation criteria for second order neutral equations with distributed deviating arguments, Appl. Math. Comput., 206 (2008), 485-493
]
Application of Laplace transform to solve fractional integro-differential equations
Application of Laplace transform to solve fractional integro-differential equations
en
en
This paper reveals the solutions to several families of fractional integro-differential equations through the application of a simple fractional calculus method. This approach results in various interesting consequences and also extends the classical Frobenius method. The provided approach is primarily based on established theorems concerning particular solutions of fractional integro-differential equations using the Laplace transform and the extension coefficients of binomial series. Additionally, an illustrative example of such fractional integro-differential equations is presented.
225
237
Gunasekar
Gunasekar
Department of Mathematics
Vel Tech Rangarajan Dr. Sagunthala R\(\&\)D Institute of Science and Technology
India
gunasekar.t@veltech.edu.in
P.
Raghavendran
Department of Mathematics
Vel Tech Rangarajan Dr. Sagunthala R\(\&\)D Institute of Science and Technology
India
rockypraba55@gmail.com
Sh. S.
Santra
Department of Mathematics
JIS College of Engineering
India
shyamsundar.santra@jiscollege.ac.in
D.
Majumder
Department of Mathematics
JIS College of Engineering
India
debasish.majumder@jiscollege.ac.in
D.
Baleanu
Institute of Space Sciences
Magurele-Bucharest
Romania
dumitru.baleanu@gmail.com
H.
Balasundaram
Department of Mathematics
Rajalakshmi Institute of Technology
India
hemajeevith@gmail.com
Riemann-Liouville fractional integrals
fractional-order differential equation
gamma function
Mittag-Leffler function
Wright function
Laplace transform of the fractional derivative
Article.2.pdf
[
[1]
M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445-1452
##[2]
M. Caputo, Elasticit`a e Dissipazione, Zanichelli, Bologna (1969)
##[3]
A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1-31
##[4]
J. Dˇzurina, S. R. Grace, I. Jadlovsk´a, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910-922
##[5]
T. M. Elzaki, S. M. Elzaki, T. M. Elzaki, S. M. Elzaki, Elixir Appl. Math., 36 (2011), 3226-3229
##[6]
R. Gorenflo, S. Vessella, Abel integral equations: Analysis and applications, Lecture Notes in Mathematics, Springer- Verlag, , Berlin (1991)
##[7]
C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, M. Altanji, Oscillation result for Half-Linear delay difference equations of second order, Math. Biosci. Eng., 19 (2022), 3879-3891
##[8]
B. Jin, Fractional differential equations—an approach via fractional derivatives, Springer, Cham (2021)
##[9]
K. Karthikeyan, A. Debbouche, D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal Fract., 5 (2021), 1-13
##[10]
V. Kiryakova, Commentary: A remark on the fractional integral operators and the image formulas of generalized Lommel- Wright function, Front. Phys., 7 (2019), 1-4
##[11]
V. Lakshmikantham, M. Rama Mohana Rao, Theory of integro-differential equations, Gordon and Breach Science Publishers, Lausanne (1995)
##[12]
V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682
##[13]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 1-21
##[14]
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1-18
##[15]
T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53-59
##[16]
T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 1-7
##[17]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315-336
##[18]
S.-D. Lin, C.-H. Lu, Laplace transform for solving some families of fractional differential equations and its applications, Adv. Difference Equ., 2013 (2013), 1-9
##[19]
F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291-16307
##[20]
G. M. Mittag-Leffler, Sur la nouvelle fonction E (x), C. R. Acad. Sci. Paris, 137 (1903), 554-558
##[21]
C. Muthamilarasi, S. S. Santra, G. Balasubramanian, V. Govindan, R. A. El-Nabulsi, K. M. Khedher, The stability analysis of A-Quartic functional equation, Mathematics, 9 (2021), 1-16
##[22]
D. Patil, Dualities between double integral transforms, Int. Adv. J. Sci., Eng. Technol., 7 (2020), 57-64
##[23]
D. Patil, Application of integral transform (Laplace and Shehu) in chemical sciences, Aayushi Int. Interdiscip. Res. J., (2022), 437-441
##[24]
R. Saadeh, A generalized approach of triple integral transforms and applications, J. Math., 2023 (2023), 1-12
##[25]
S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237-22255
##[26]
F. S. Silva, D. M. Moreira, M. A. Moret, Conformable Laplace transform of fractional differential equations, Axioms, 7 (2018), 1-12
##[27]
H. M. Srivastava, 1 An Introductory Overview of Special Functions and Their Associated Operators of Fractional Calculus, Special Functions Fract. Calc. Eng., (2023), 1-35
##[28]
N. E. H. Taha1, R. I. Nuruddeen, A. K. H. Sedeeg, Dualities between”Kamal & Mahgoub Integral Transforms”and”Some Famous Integral Transforms”, Br. J. Appl. Sci. Technol., 20 (2017), 1-8
##[29]
A. Y¨ uce, N. Tan, Inverse Laplace transforms of the fractional order transfer functions, In: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), IEEE., (2019), 775-779
]
Analyzing convex univalent functions on semi-infinite strip domains
Analyzing convex univalent functions on semi-infinite strip domains
en
en
In this paper, a new class of analytic functions called convex univalent functions is introduced. These functions are of the form \[1+\frac{1}{a} \log\frac{1-b z}{1-z}\ \ \text{for}\ \ a>0,\ -1< b<1,\] and they map the open unit disk onto a horizontal semi-infinite strip domain. The paper focuses on function families for which \(zf'/f\) maps the unit disk to a subset of this strip domain. Several properties of this class of functions are discussed, including coefficient estimates, extreme points, and growth properties. The paper also explores connections to other classes of functions, such as starlike functions. There are several applications of this class of functions. They can be used in conformal mapping problems and problems related to the analysis of complex networks. The results presented in the paper can also be applied in constructing mathematical models that describe various physical phenomena, such as fluid dynamics and electromagnetism.
238
249
V. S.
Masih
Department of Mathematics
Payame Noor University
Iran
R.
Saadeh
Department of Mathematics
Zarqa University
Jordan
rsaadeh@zu.edu.jo
M.
Fardi
Department of Applied Mathematics, Faculty of Mathematical Sciences
Shahrekord University
Iran
A.
Qazza
Department of Mathematics
Zarqa University
Jordan
Univalent functions
subordination
starlike functions
horizontal semi-infinite strip
Article.3.pdf
[
[1]
M. Abu-Ghuwaleh, R. Saadeh, A. Qazza, A novel approach in solving improper integrals, Axioms, 11 (2022), 1-19
##[2]
M. Abu-Ghuwaleh, R. Saadeh, A. Qazza, General master theorems of integrals with applications, Mathematics, 106 (2022), 1-19
##[3]
E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon, Duality for convolution on subclasses of analytic functions and weighted integral operators, Demonstr. Math., 56 (2023), 1-11
##[4]
E. Amini, S. Al-Omari, M. Fardi, K. Nonlaopon, Duality on q-Starlike Functions Associated with Fractional q-Integral Operators and Applications, Symmetry, 14 (2022), 1-12
##[5]
E. Amini, M. Fardi, S. Al-Omari, R. Saadeh, Certain differential subordination results for univalent functions associated with q-Salagean operators, AIMS Math., 8 (2023), 15892-15906
##[6]
A. Amourah, A. Alsoboh, O. Ogilat, G. Gharib, R. Saadeh M. Al Soudi, A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions, Axioms, 12 (2023), 1-13
##[7]
P. L. Duren, Univalent Functions, Springer-Verlag, New York (1983)
##[8]
P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43 (2020), 957-991
##[9]
L. Hawawsheh, A. Qazza, R. Saadeh, A. Zraiqat, I. M. Batiha, Lp-Mapping Properties of a Class of Spherical Integral Operators, Axioms, 12 (2023), 1-11
##[10]
A. Hazaymeh, A. Qazza, R. Hatamleh, M. Alomari, R. Saadeh, On Further Refinements of Numerical Radius Inequalities, Axioms, 12 (2023), 1-20
##[11]
A. Hazaymeh, R. Saadeh, R. Hatamleh, M. Alomari, A. Qazza, A Perturbed Milne’s Quadrature Rule for n-Times Differentiable Functions with Lp-Error Estimates, Axioms, 12 (2023), 1-15
##[12]
M. Ibrahim, K. R. Karthikeyan, Subclasses of Analytic Functions with Respect to Symmetric and Conjugate Points Defined Using q-Differential operator, Int. J. Anal. Exp. Modal Anal., 12 (2020), 1719-1729
##[13]
M. Ibrahim, A. Senguttuvan, D. Mohankumar, R. G. Raman, On classes of Janowski functions of complex order involving a q-derivative operator, Int. J. Math. Comput. Sci., 15 (2020), 1161-1172
##[14]
S. Kanas, V. S. Masih, A. Ebadian, Relations of a planar domains bounded by hyperbolas with families of holomorphic functions, J. Inequal. Appl., 2019 (2019), 1-14
##[15]
S. Kanas, A. Wi´sniowska, Conic regions and k-uniform convexity. II, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 22 (1998), 65-78
##[16]
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336
##[17]
R. Kargar, A. Ebadian, J. Sok´ oł, On Booth lemniscate and starlike functions, Anal. Math. Phys., 9 (2019), 143-154
##[18]
M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Math., 8 (2023), 21993-22008
##[19]
L. Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam (1981)
##[20]
W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, (1994), 157-169
##[21]
V. S. Masih, A. Ebadian, J. Sok´ oł, On strongly starlike functions related to the Bernoulli lemniscate, Tamkang J. Math., 53 (2022), 187-199
##[22]
V. S. Masih, S. Kanas, Subclasses of starlike and convex functions associated with the lima¸con domain, Symmetry, 12 (2020), 1-11
##[23]
R. Mendiratta, S. Nagpal, V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math., 25 (2014), 1-17
##[24]
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365-386
##[25]
S. S. Miller, P. T. Mocanu, Differential subordinations, In: Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York (2000)
##[26]
S. Ozaki, On the theory of multivalent functions. II, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A, 4 (1941), 45-87
##[27]
T. Qawasmeh, A. Qazza, R. Hatamleh, M. Alomari, R. Saadeh, Further Accurate Numerical Radius Inequalities, Axioms, 12 (2023), 1-15
##[28]
M. S. Robertson, Certain classes of starlike functions, Michigan Math. J., 32 (1985), 135-140
##[29]
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2), 2 (1943), 48-82
##[30]
F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196
##[31]
R. Saadeh, M. Abu-Ghuwaleh, A. Qazza, E. K. Kuffi, Fundamental Criteria to Establish General Formulas of Integrals, J. Appl. Math., 2022 (2022), 1-16
##[32]
J. Sok´ oł, A certain class of starlike functions, Comput. Math. Appl., 62 (2011), 611-619
##[33]
L. A. Wani, A. Swaminathan, Starlike and Convex Functions Associated with a Nephroid Domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79-104
]
Soft algebraic structures embedded with soft members and soft elements: an abstract approach
Soft algebraic structures embedded with soft members and soft elements: an abstract approach
en
en
As a new area of study in pure mathematics, the theory of soft sets is expanding by redefining fundamental ideas as algebraic structures, such as soft groups, soft rings, and soft fields. It also finds applications in other domains, regarding data analysis and decision-making. This study manipulates soft members and soft elements to explore soft structures from a traditional point of view, making it easier to comprehend soft algebraic structures. The soft inverse of a soft member and the soft identity member are generalized for any soft group, and a method to count the number of possible soft subgroups of a soft group is also provided.
250
263
M.
Saeed
Department of Mathematics
University of Management and Technology
Pakistan
muhammad.saeed@umt.edu.pk
I.
Shafique
Department of Mathematics
Department of Mathematics
University of Management and Technology
Forman Christian College (A Chartered University)
Pakistan
Pakistan
imranaashafiq@gmail.com
A. U.
Rahman
Department of Mathematics
University of Management and Technology
Pakistan
aurkhb@gmail.com
S.
El-Morsy
Department of Mathematics, College of Science and Arts
Basic Science Department
Qassim University
Nile Higher Institute for Engineering and Technology
Saudi Arabia
Egypt
s.elmorsy@qu.edu.sa
Soft member
mathematical model
soft group
soft ring
soft field
computational model
Article.4.pdf
[
[1]
U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458-3463
##[2]
H. Aktas¸, N. C¸ a˘gman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726-2735
##[3]
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547-1553
##[4]
A. Al-Quran, F. Al-Sharqi, Z. Md. Rodzi, M. Aladil, R. A. shlaka, M.U. Romdhini, M. K. Tahat, O. S. Solaiman, The Algebraic Structures of Q-Complex Neutrosophic Soft Sets Associated with Groups and Subgroups, Int. J. Neutrosophic Sci., 22 (2023), 60-76
##[5]
T. M. Al-shami, Z. A. Ameen, A. Mhemdi, The connection between ordinary and soft -algebras with applications to information structures, AIMS Math., 8 (2023), 14850-14866
##[6]
T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: (a, b)-fuzzy soft sets, AIMS Math., 8 (2023), 2995-3025
##[7]
T. M. Al-shami, M. El-Shafei, T-soft equality relation, Turkish J. Math., 44 (2020), 1427-1441
##[8]
Z. A. Ameen, T. M. Al-shami, R. Abu-Gdairi, A. Mhemdi, The relationship between ordinary and soft algebras with an application, Mathematics, 11 (2023), 1-12
##[9]
M. Aslam, S. M. Qurashi, Some contributions to soft groups, Ann. Fuzzy Math. Inform., 4 (2012), 177-195
##[10]
K. V. Babitha, J. J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840-1849
##[11]
K. V. Babitha, J. J. Sunil, Transitive closures and orderings on soft sets, Comput. Math. Appl., 62 (2011), 2235-2239
##[12]
N. C¸ a˘gman, S. Engino˘ glu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 3308-3314
##[13]
S. Das, S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math., 20 (2012), 551-576
##[14]
J. W. Dauben, George Cantor: his mathematics and philosophy of the infinite, Princeton University Press, Princeton, New Jersey (1979)
##[15]
X. Ge, S. Yang, Investigations on some operations of soft sets, World Academy Sci. Eng. Technol., 5 (2011), 1113-1116
##[16]
S. Goldar, S. Ray, A study of soft topological axioms and soft compactness by using soft elements, J. New Results Sci., 8 (2019), 53-66
##[17]
M. Ihsan, A. U. Rahman, M. Saeed, A Rudimentary Approach to Develop Context for Convexity cum Concavity on Soft Expert Set with Some Generalized Results, Punjab Univ. J. Math. (Lahore), 53 (2021), 621-629
##[18]
M. Ihsan, A. U. Rahman, M. Saeed, H. A. E. W. Khalifa, Convexity-cum-concavity on fuzzy soft expert set with certain properties, Int. J. Fuzzy Logic Intell. Syst., 21 (2021), 233-242
##[19]
F. Koyuncu, B. Tanay, Some soft algebraic structures, J. New Results Sci., 5 (2016), 38-51
##[20]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562
##[21]
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083
##[22]
N. Malik, M. Shabir, T.M. Al-shami, R. Gul, M. Arar, M. Hosny, Rough bipolar fuzzy ideals in semigroups, Complex Intell. Syst., 9 (2023), 7197-7212
##[23]
A. Mehta, V. Yadav, Applications of sets, Int. J. Innov. Res. Technol., 1 (2014), 892-893
##[24]
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19-31
##[25]
A. U. Rahman, M. Saeed, M. Arshad, M. Ihsan, M. R. Ahmad, (m, n)-convexity-cum-concavity on fuzzy soft set with applications in first and second sense, Punjab Univ. J. Math. (Lahore), 53 (2021), 19-33
##[26]
A. U. Rahman, M. Saeed, M. Ihsan, M. Arshad, S. Ayaz, A conceptual framework of m-convex and mconcave sets under soft set environment with properties, Trans. Math. Comput. Sci., 1 (2021), 40-60
##[27]
S. Ray, S. Goldar, Soft set and soft group from classical view point, J. Indian Math. Soc. (N.S.), 84 (2017), 273-286
##[28]
M. U. Romdhini, A. Al-Quran, F. Al-Sharqi, H. Hashim, A. Lutfi, Unveiling an Innovative Approach to Q-Complex Neutrosophic Soft Rings, Int. J Neutrosophic Sci., 22 (2023), 28-35
##[29]
M. U. Romdhini, A. Al-Quran, F. Al-Sharqi, M. K. Tahat, A. Lutfi, Exploring the Algebraic Structures of Q-Complex Neutrosophic Soft Fields, Int. J. Neutrosophic Sci., 22 (2023), 93-105
##[30]
A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, Comput. Math. Appl., 203 (2007), 412-418
##[31]
M. Saeed, M. Hussain, A. A. Mughal, A study of soft sets with soft members and soft elements: A new approach, Punjab Univ. J. Math. (Lahore), 52 (2020), 1-15
##[32]
M. Saeed, S. Mahmood, H. Taufeeq, Hybridization of soft expert set with AHP in decision making, Int. J. Comput Appl., 179 (2017), 24-29
##[33]
A. Sezgin, A. O. Atag ¨ un, On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457-1467
##[34]
D. Singh, I. A. Onyeozili, On some new properties of soft set operations, Int. J. Math., 59 (2012), 39-44
##[35]
H.-L. Yang, Z.-L. Guo, Kernels and closures of soft set relations and soft set relation mappings, Comput. Math. Appl., 61 (2011), 651-662
##[36]
A. Yolcu, T. Y. Ozturk, Pairwise soft separation axioms in soft bigeneralized topological spaces, New Trends Math. Sci., 7 (2019), 484-494
##[37]
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353
##[38]
P. Zhu, Q. Wen, Operations on Soft Sets Revisited, J. Appl. Math., 2013 (2013), 1-7
]
An additive-cubic functional equation in a Banach space
An additive-cubic functional equation in a Banach space
en
en
In this article, we consider the following functional equation:
\begin{align}
2h(x+y, z+w) + 2h(x-y, z-w) + 12h(x, z) = h(x+y, 2z+w) + h(x-y, 2z-w).
\end{align}
Using the direct and fixed-point methods, we obtain the Hyers-Ulam stability of the proposed functional equation.
264
274
S.
Paokanta
School of Science
University of Phayao
Thailand
siriluk.pa@up.ac.th
C.
Park
Research Institute for Natural Sciences
Hanyang University
Korea
baak@hanyang.ac.kr
N.
Jun-on
Faculty of Sciences
Lampang Rajabhat University
Thailand
nipa.676@g.lpru.ac.th
R.
Suparatulatorn
Office of Research Administration
Department of Mathematics, Faculty of Science
Chiang Mai University
Chiang Mai University
Thailand
Thailand
raweerote.s@gmail.com
Hyers-Ulam stability
additive-cubic functional equation
direct method
fixed point method
Article.5.pdf
[
[1]
M. Amyari, C. Baak, M. S. Moslehian, Nearly ternary derivations, Taiwanese J. Math., 11 (2007), 1417-1424
##[2]
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66
##[3]
L. C˘adariu, V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math., 4 (2003), 1-7
##[4]
L. C˘adariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, In: Iteration theory (ECIT ’02), Karl-Franzens-Univ. Graz, Graz, 346 (2004), 43-52
##[5]
L. C˘adariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008 (2008), 1-15
##[6]
Y. J. Cho, C. Park, R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., 23 (2010), 1238-1242
##[7]
J. B. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309
##[8]
I. El-Fassi, Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek’s fixed point theorem, J. Fixed Point Theory Appl., 19 (2017), 2529-2540
##[9]
P. G˘avrut¸a, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436
##[10]
M. E. Gordji, A. Fazeli, C. Park, 3-Lie multipliers on Banach 3-Lie algebras, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1-15
##[11]
M. E. Gordji, M. B. Ghaemi, B. Alizadeh, A fixed point method for perturbation of higher ring derivationsin non- Archimedean Banach algebras, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1611-1625
##[12]
I. Hwang, C. Park, Ulam stability of an additive-quadratic functional equation in Banach spaces, J. Math. Inequal., 14 (2020), 421-436
##[13]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224
##[14]
D. H. Hyers, S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828
##[15]
D. H. Hyers, The stability of homomorphisms and related topics, In: Global analysis–analysis on manifolds, 75 (1983), 140-153
##[16]
D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153
##[17]
G. Isac, Th. M. Rassias, Stability of -additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219-228
##[18]
K.-W. Jun, H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 267-278
##[19]
S.-M. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165-171
##[20]
S.-M. Jung, M. Th. Rassias, C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput., 252 (2015), 294-303
##[21]
Y.-H. Lee, S.-M. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61
##[22]
D. Mihet¸, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572
##[23]
I. Nikoufar, Jordan ( , )-derivations on Hilbert C -modules, Indag. Math. (N.S.), 26 (2015), 421-430
##[24]
C. Park, Additive -functional inequalities and equations, J. Math. Inequal., 9 (2015), 17-26
##[25]
C. Park, Additive -functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397-407
##[26]
C. Park, Fixed point method for set-valued functional equations, J. Fixed Point Theory Appl., 19 (2017), 2297-2308
##[27]
C. Park, Biderivations and bihomomorphisms in Banach algebras, Filomat, 33 (2019), 2317-2328
##[28]
C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that has the quadraticmultiplicative property, Open Math., 18 (2020), 837-845
##[29]
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96
##[30]
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300
##[31]
A. Thanyacharoen, W. Sintunavarat, The new investigation of the stability of mixed type additive-quartic functional equations in non-Archimedean spaces, Demonstr. Math., 53 (2020), 174-192
##[32]
A. Thanyacharoen, W. Sintunavarat, On new stability results for composite functional equations in quasi- -normed spaces, Demonstr. Math., 54 (2021), 68-84
##[33]
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York (1960)
##[34]
Z. Wang, Stability of two types of cubic fuzzy set-valued functional equations, Results Math., 70 (2016), 1-14
]
A novel decision-making technique based on T-rough bipolar fuzzy sets
A novel decision-making technique based on T-rough bipolar fuzzy sets
en
en
In this paper, we hybridize the bipolar fuzzy set (BFS) theory with T-rough sets (T-RSs) and initiate the novel idea of T-rough BFSs (T-RBFSs). The concept presented in this article has never been discussed earlier. Moreover, we investigate the axiomatic systems of T-RBFSs in detail. Meanwhile, we address a decision-making (DM) problem having data endowed with fuzziness and bipolarity in the framework of the T-RBFSs. We also propose an algorithm for this application. This algorithm facilitates tackling the case when there is a team of decision-makers instead of a single decision-maker and when the objects of one set need to be approximated by grading the objects of some other set. Moreover, a practical application of T-RBFSs in DM problems is given, accompanied by a practical example, which provides the optimal and the worst decision between some objects. Finally, a comparative analysis of the recommended study with several prevailing approaches is given to endorse the advantages of the suggested research.
275
289
N.
Malik
Department of Mathematics
Quaid-i-Azam University
Pakistan
M.
Shabir
Department of Mathematics
Quaid-i-Azam University
Pakistan
T. M.
Al-shami
Department of Mathematics
Department of Engineering Mathematics \(\&\) Physics, Faculty of Engineering \(\&\) Technology
Sana'a University
Future University
Yemen
Egypt
R.
Gul
Department of Mathematics
Quaid-i-Azam University
Pakistan
M.
Arar
Department of Mathematics, College of Sciences and Humanities in Aflaj
Prince Sattam bin Abdulaziz
Saudi Arabia
muradshhada@gmail.com
T-rough sets
bipolar fuzzy sets
T-rough bipolar fuzzy sets
decision-Making
Article.6.pdf
[
[1]
M. Akram, W. A. Dudek, Regular bipolar fuzzy graphs, Neural Comput. Appl., 21 (2012), 197-205
##[2]
M. A. Alghamdi, N. O. Alshehri, M. Akram, Multi-criteria decision-making methods in bipolar fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057-2064
##[3]
T. M. Al-shami, An improvement of rough sets’ accuracy measure using containment neighborhoods with a medical application, Inform. Sci., 569 (2021), 110-124
##[4]
T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449-14460
##[5]
T. M. Al-shami, Bipolar soft sets: relations between them and ordinary points and their applications, Complexity, 2021 (2021), 1-14
##[6]
T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101-4113
##[7]
T. M. Al-shami, (2,1)-Fuzzy sets: properties, weighted aggregated operators and their applications to multi-criteria decisionmaking methods, Complex Intell. Syst., 9 (2023), 1687-1705
##[8]
T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: (a, b)-fuzzy soft sets, AIMS Math., 8 (2023), 2995-3025
##[9]
T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev, 56 (2023), 6855-6883
##[10]
T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317-1330
##[11]
T. M. Al-shami, A. Mhemdi, Generalized frame for orthopair fuzzy sets: (m, n)-Fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14 (2023), 1-21
##[12]
M. Banerjee, S. K. Pal, Roughness of a fuzzy set, Inform. Sci., 93 (1996), 235-246
##[13]
B. Davvaz, A short note on algebraic T-rough sets, Inform. Sci., 178 (2008), 3247-3252
##[14]
J. Deng, J. Zhan, E. Herrera-Viedma, F. Herrera, Regret Theory-Based Three-Way Decision Method on Incomplete Multiscale Decision Information Systems With Interval Fuzzy Numbers, IEEE Trans. Fuzzy Syst., 31 (2023), 982-996
##[15]
D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191-209
##[16]
D. Dubois, H. Prade, An introduction to bipolar representations of information and preferences, Int. J. Intell. Syst., 23 (2008), 866-877
##[17]
F. Feng, L. Changxing, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput., 14 (2010), 899-911
##[18]
F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math., 234 (2010), 10-20
##[19]
R. Gul, M. Shabir, Roughness of a set by ( , )-indiscernibility of Bipolar fuzzy relation, Comput. Appl. Math., 39 (2020), 1-22
##[20]
M. Gulistan, N. Yaqoob, A. Elmoasry, J. Alebraheem, Complex bipolar fuzzy sets: An application in a transport’s company, J. Intell. Fuzzy Syst., 40 (2021), 3981-3997
##[21]
Y. Han, Z. Lu, Z. Du, Q. Luo, S. Chen, A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis, Comput. Methods Programs Biomed., 158 (2018), 1-10
##[22]
Y. Han, P. Shi, S. Chen, Bipolar-Valued Rough Fuzzy Set and Its Applications to the Decision Information System, IEEE Trans. Fuzzy Syst., 23 (2015), 2358-2370
##[23]
R. A. Hosny, B. A. Asaad, A. A. Azzam, T. M. Al-shami, Various topologies generated from Ej-neighbourhoods via ideals, Complexity, 2021 (2021), 1-11
##[24]
H. Z. Ibrahim, T. M. Al-shami, M. Arar, M. Hosny, kn m-Rung Picture Fuzzy Information in a Modern Approach to Multi-Attribute Group Decision-Making, Complex Intell. Syst., (2023), 1-21
##[25]
C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decisionmaking process, J. Ambient Intell. Human. Comput., 10 (2019), 3533-3549
##[26]
J. Kim, S. K. Samanta, P. K. Lim, J. G. Lee, K. Hur, Bipolar fuzzy topological spaces, Ann. Fuzzy Math. Inform., 17 (2019), 205-229
##[27]
K. M. Lee, Bipolar-valued fuzzy sets and their basic operations, In: Proceedings of the International Conference, Bangkok, Thailand, (2000), 307-317
##[28]
K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar-valued fuzzy sets, J. Korean Inst. Intell. Syst., 14 (2004), 125-129
##[29]
M. Lu, J. R. Busemeyer, Do traditional chinese theories of Yi Jing (’Yin-Yang’and Chinese medicine go beyond western concepts of mind and matter, Mind Matter, 12 (2014), 37-59
##[30]
X. Ma, Q. Liu, J. Zhan, A survey of decision making methods based on certain hybrid soft set models, Artif. Intell. Rev., 47 (2017), 507-530
##[31]
T. Mahmood, S. Abdullah, M. Bilal, S. Rashid, Multiple criteria decision making based on bipolar valued fuzzy set, Ann. Fuzzy Math. Inform., 11 (2016), 1003-1009
##[32]
T. Mahmood, U. Ur Rehman, A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures, Int. J. Intell. Syst., 37 (2021), 535-567
##[33]
N. Malik, M. Shabir, Rough fuzzy bipolar soft sets and applications in decision-making problems, Soft Comput., 23 (2019), 1603-1614
##[34]
N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, M. Hosny, Rough bipolar fuzzy ideals in semigroups, Complex Intell. Syst., 9 (2023), 7197-7212
##[35]
N. Malik, M. Shabir, T. M. Al-shami, R. Gul, A. Mhemdi, Medical decision-making techniques based on bipolar soft information, AIMS Math., 8 (2023), 18185-18205
##[36]
D. Stanujkic, D. Karabasevic, E. K. Zavadskas, F. Smarandache, W. K. M. Brauers, A bipolar fuzzy extension of the MULTIMOORA method, Informatica, 30 (2019), 135-152
##[37]
Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982), 341-356
##[38]
Z. Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sci., 177 (2007), 3-27
##[39]
M. Riaz, S. T. Tehrim, A robust extension of VIKOR method for bipolar fuzzy sets using connection numbers of SPA theory based metric spaces, Artif. Intell. Rev., 54 (2021), 561-591
##[40]
R. Sahu, S. R. Dash, S. Das, Career selection of students using hybridized distance measure based on picture fuzzy set and rough set theory, Decis. Mak.: Appl. Manag. Eng., 4 (2021), 104-126
##[41]
M. Shabir, M. I. Ali, Soft ideals and generalized fuzzy ideals in semigroups, New Math. Nat. Comput., 5 (2009), 599-615
##[42]
M. Shabir, Y. B. Jun, Y. Nawaz, Characterizations of regular semgroups by ( , )-fuzzy ideals, Comput. Math. Appl., 59 (2010), 161-175
##[43]
M. Shabir, Y. B. Jun, Y. Nawaz, Semigroups characterized by ( , _qk)-fuzzy ideals, Comput. Math. Appl., 60 (2010), 1473-1493
##[44]
H. Sharma, P. Sivaprakasam, M. Angamuthu, Generalized Z-fuzzy soft -covering based rough matrices and its application to MAGDM problem based on AHP method, Decis. Mak.: Appl. Manag. Eng., 6 (2023), 134-152
##[45]
J. Wang, X. Ma, Z. Xu, J. Zhan, Regret Theory-Based Three-Way Decision Model in Hesitant Fuzzy Environments and Its Application to Medical Decision, IEEE Trans. Fuzzy Syst., 30 (2022), 5361-5375
##[46]
G. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making, Int. J. Fuzzy Syst., 20 (2018), 1-12
##[47]
H.-L. Yang, S.-G. Li, Z.-L. Guo, C.-H. Ma, Transformation of bipolar fuzzy rough set models, Knowl. Based Syst., 27 (2012), 60-68
##[48]
H.-L. Yang, S.-G. Li, S. Wang, J. Wang, Bipolar fuzzy rough set model on two different universes and its application, Knowl. Based Syst., 35 (2012), 94-101
##[49]
Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci., 180 (2010), 341-353
##[50]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353
##[51]
J. Zhan, M. I. Ali, N. Mehmood, On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods, Appl. Soft Comput., 56 (2017), 446-457
##[52]
J. Zhan, W. Wang, J. C. R. Alcantud, J. Zhan, A three-way decision approach with prospect-regret theory via fuzzy set pair dominance degrees for incomplete information systems, Inf. Sci., 617 (2022), 310-330
##[53]
W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, In: NAFIPS/IFIS/NASA’94. Proceedings of the first international joint conference of the North American fuzzy information processing society biannual conference. The Industrial Fuzzy Control and Intellige., IEEE, (1994), 305-309
##[54]
W. R. Zhang, Bipolar quantum logic gates and quantum cellular combinatoricsa logical extension to quantum entanglement, J. Quantum Inf. Sci., 3 (2013), 93-105
##[55]
W. R. Zhang, G-CPT Symmetry of Quantum Emergence and Submergence–An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence, J. Quantum Inf. Sci., 6 (2016), 62-97
##[56]
W. R. Zhang, A. K. Pandurangi, K. E. Peace, Y.-Q. Zhang, Z. Zhao, MentalSquares: a generic bipolar support vector machine for psychiatric disorder classification, diagnostic analysis and neurobiological data mining, Int. J. Data Min. Bioinform., 5 (2011), 532-557
##[57]
W. R. Zhang, K. E. Peace, Causality is logically definable—toward an equilibrium-based computing paradigm of quantum agents and quantum intelligence (QAQI)(Survey and research), J. Quantum Inf. Sci., 4 (2014), 227-268
##[58]
W.-R. Zhang, J. H. Zhang, Y. Shi, S.-S. Chen, Bipolar linear algebra and yinyang-N-element cellular networks for equilibrium-based biosystem simulation and regulation, J. Biol. Syst., 17 (2009), 547-576
##[59]
B. Zhou, J. Chen, Q. Wu, D. Pamucar, W. Wang, L. Zhou, Risk priority evaluation of power transformer parts based on hybrid FMEA framework under hesitant fuzzy environment, Facta Univ. Ser.: Mech. Eng., 20 (2022), 399-420
]
Description of regular and intra-regular ordered semigroups by tripolar fuzzy ideals
Description of regular and intra-regular ordered semigroups by tripolar fuzzy ideals
en
en
A mathematical notion dealing with tripolar information is called tripolar fuzzy sets.
It was first used to study the properties of \(\Gamma\)-semigroups.
In 2022, ordered semigroups were the first considered by tripolar fuzzy sets.
It was established that in regular and intra-regular ordered semigroups, the concepts of tripolar fuzzy interior ideals and tripolar ideals are equivalent.
The primary goal of this study is to employ tripolar fuzzy left and right ideals to characterize regular and intra-regular ordered semigroups.
Additionally, a connection between tripolar fuzzy left (resp., right) ideals and left (resp., right) ideals in ordered semigroups is given.
290
297
N.
Wattanasiripong
Division of Applied Mathematics, Faculty of Science and Technology
Valaya Alongkorn Rajabhat University under the Royal Patronage
Thailand
nuttapong@vru.ac.th
N.
Lekkoksung
Division of Mathematics, Faculty of Engineering
Rajamangala University of Technology Isan
Thailand
nareupanat.le@rmuti.ac.th
S.
Lekkoksung
Division of Mathematics, Faculty of Engineering
Rajamangala University of Technology Isan
Thailand
lekkoksung_somsak@hotmail.com
Ordered semigroup
tripolar fuzzy left ideal
tripolar fuzzy right ideal
regularity
Article.7.pdf
[
[1]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96
##[2]
Y. Cao, Characterizations of regular ordered semigroups by strong quasi-ideals, Vietnam J. Math., 30 (2002), 239-250
##[3]
N. Kehayopulu, On completely regular poe-semigroups, Math. Japon., 37 (1992), 123-130
##[4]
N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum, 46 (1993), 271-278
##[5]
D. M. Lee, S. K. Lee, On intra-regular ordered semigroups, Kangweon-Kyungki Math. J., 14 (2006), 95-100
##[6]
K. M. Lee, K. M. Lee, K. J. Cios, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets, Comput. Inf. Technol., (2001), 433-439
##[7]
M. M. K. Rao, Tripolar fuzzy interior ideals of -semigroup, Ann. Fuzzy Math. Inform., 15 (2018), 199-206
##[8]
M. M. K. Rao, B. Venkateswarlu, Tripolar fuzzy interior ideals of a -semiring, Asia Pac. J. Math., 5 (2018), 192-207
##[9]
N. Wattanasiripong, N. Lekkoksung, S. Lekkoksung, On tripolar fuzzy interior ideals in ordered semigroups, Int. J. Innov. Comput. Inf. Control, 18 (2022), 1291-1304
##[10]
L. A. Zadeh, Fuzzy sets, Inf. Control, 3 (1965), 338-353
##[11]
W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, In: NAFIPS/IFIS/NASA’94. Proceedings of the first international joint conference of the North American fuzzy information processing society biannual conference, The Industrial Fuzzy Control and Intellige, IEEE, (1994), 305-309
]
Effect of ACE2 receptor and CTL response on within-host dynamics of SARS-CoV-2 infection
Effect of ACE2 receptor and CTL response on within-host dynamics of SARS-CoV-2 infection
en
en
Since the end of 2019, scientists and researchers have intensified their
efforts to comprehend the within-host dynamics of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus illness 2019
(COVID-19). The dynamics and progression of the SARS-CoV-2 inside the body
may be understood with the use of mathematical modeling. In this study, we
develop a mathematical model for characterizing the within-host dynamics of
SARS-CoV-2 infection under the effect of ACE2 receptor and cytotoxic T
lymphocytes (CTL) response. Latently and actively (productively) epithelial
infected cells are represented in the model as two distinct classes. We take
into account three distributed delays, including (i) the formation of latently
infected cells, (ii) the activation of latently infected cells, and (iii) the
maturation of newly released virions. We first prove that the model is
well-posed, then find all possible equilibria. To determine if an equilibrium
exists and is globally asymptotically stable, we derive two threshold
parameters: the basic reproduction number (\(\Re_{0}\)) and CTL response
activation number (\(\Re_{1}\)). We demonstrate the global asymptotic stability
for all equilibria by constructing the relevant Lyapunov functions and
employing LaSalle's invariance principle. To illustrate the theoretical
findings, we run numerical simulations. We do sensitivity analysis and
determine the most vulnerable parameters. It is discussed how CTL response and
ACE2 receptors affect the kinetics of the SARS-CoV-2. Even though \(\Re_{0}\) is
independent of CTL response characteristics, it is shown that significant CTL
immune activation can impede viral replication. Moreover, we found that,
\(\Re_{0}\) is influenced by the rates of ACE2 receptor growth and degradation,
and this may offer valuable guidance for the creation of potential
receptor-targeted vaccinations and medications. The impact of time delays and
the latent period on SARS-CoV-2 infection is finally examined.
298
325
A. M.
Elaiw
Department of Mathematics, Faculty of Science
King Abdulaziz University
Saudi Arabia
aelaiwksu.edu.sa@kau.edu.sa
A. S.
Alsulami
Department of Mathematics, Faculty of Science
Department of Mathematics and Statistics, Faculty of Science
King Abdulaziz University
University of Jeddah
Saudi Arabia
Saudi Arabia
A. D.
Hobiny
Department of Mathematics, Faculty of Science
King Abdulaziz University
Saudi Arabia
SARS-CoV-2
ACE2 receptor
COVID-19
CTL response
Lyapunov function
global stability
Article.8.pdf
[
[1]
P. Abuin, A. Anderson, A. Ferramosca, E. A. Hernandez-Vargas, A. H. Gonzalez, Characterization of SARS-CoV-2 dynamics in the host, Annu. Rev. Control, 50 (2020), 457-468
##[2]
A. Addeo, A. Friedlaender, Cancer and COVID-19: unmasking their ties, Cancer Treat. Rev., 88 (2020), 1-7
##[3]
I. Al-Darabsah, K.-L. Liao, S. Portet, A simple in-host model for COVID-19 with treatments: model prediction and calibration, J. Math. Biol., 86 (2023), 1-36
##[4]
A. E. S. Almoceraa, G. Quiroz, E. A. Hernandez-Vargas, Stability analysis in COVID-19 within-host model with immune response, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 1-15
##[5]
N. Bairagi, D. Adak, Global analysis of HIV-1 dynamics with Hill type infection rate and intracellular delay, Appl. Math. Model., 38 (2014), 5047-5066
##[6]
A. N. Chatterjee, F. Al Basir, A model for SARS-CoV-2 infection with treatment, Comput. Math. Methods Med., 2020 (2020), 1-11
##[7]
B. Chhetri, V. M. Bhagat, D. K. K. Vamsi, V. S. Ananth, D. B. Prakash, R. Mandale, S. Muthusamy, C. B Sanjeevi, Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in COVID-19 identifies combination therapy to be most effective and optimal, Alex. Eng. J., 60 (2021), 2491-2512
##[8]
A. Danchin, O. Pagani-Azizi, G. Turinici, G. Yahiaoui, COVID-19 adaptive humoral immunity models: weakly neutralizing versus antibody-disease enhancement scenarios, Acta Biotheor., 70 (2022), 1-24
##[9]
B. Dariya, G. P. Nagaraju, Understanding novel COVID-19: its impact on organ failure and risk assess- ment for diabetic and cancer patients, Cytokine Growth Factor Rev., 53 (2020), 43-52
##[10]
H. M. Dobrovolny, Quantifying the effect of remdesivir in rhesus macaques infected with SARS-CoV-2, Virology, 550 (2020), 61-69
##[11]
S. Q. Du, W. Yuan, Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis, J. Med. Virol., 92 (2020), 1615-1628
##[12]
A. M. Elaiw, A. J. Alsaedi, A. D. Hobiny, S. Aly, Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response, Phys. A, 616 (2023), 1-34
##[13]
F. Fatehi, R. J. Bingham, E. C. Dykeman, P. G. Stockley, R. Twarock, Comparing antiviral strategies against COVID-19 via multiscale within-host modelling, Royal Soi. Open Sci., 8 (2021), 1-17
##[14]
I. Ghosh, Within host dynamics of SARS-CoV-2 in humans: modeling immune responses and antiviral treatments, SN Comput. Sci., 2 (2021), 1-12
##[15]
A. Gonc¸alves, J. Bertrand, R. Ke, E. Comets, X. de Lamballerie, D. Malvy, A. Pizzorno, O. Terrier, M. R. Calatrava, F. Mentr´e, P. Smith, A. S. Perelson, J. Guedj, Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load, CPT: Pharmacomet. Syst. Pharmacol., 9 (2020), 509-514
##[16]
J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, New York (1993)
##[17]
K. Hattaf, N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Math. Biosci. Eng., 17 (2020), 5326-5340
##[18]
E. A. Hernandez-Vargas, J. X. Velasco-Hernandez, In-host mathematical modelling of COVID-19 in humans, Annu. Rev. Control, 50 (2020), 448-456
##[19]
G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. App. Math., 70 (2010), 2693-2708
##[20]
C. B. Jackson, M. Farzan, B. Chen, H. Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23 (2020), 3-20
##[21]
A. L. Jenner, R. A. Aogo, S. Alfonso, V. Crowe, X. Deng, A. P. Smith, P. A. Morel, C. L. Davis, A. M. Smith, M. Craig, COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes, PLoS Pathog., 17 (2021), 1-33
##[22]
R. Ke, C. Zitzmann, D. D. Ho, R. M. Ribeiro, A. S. Perelson, In vivo kinetics of SARS-CoV-2 infection and its relationship with a person’s infectiousness, Proc. Natl. Acad. Sci. USA, 118 (2021), 1-9
##[23]
T. Keyoumu, W. Ma, K. Guo, Existence of positive periodic solutions for a class of in-host MERS-CoV infection model with periodic coefficients, AIMS Math., 7 (2022), 3083-3096
##[24]
T. Keyoumu, K. Guo, W. Ma, Periodic oscillation for a class of in-host MERS-CoV infection model with CTL immune response, Math. Biosci. Eng., 19 (2022), 12247-12259
##[25]
T. Keyoumu,W. Ma, K. Guo, Global stability of a MERS-CoV infection model with CTL immune response and intracellular delay, Mathematics, 11 (2023), 1-26
##[26]
H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall,, Upper Saddle River (2002)
##[27]
A. Khan, R. Zarin, G. Hussain, N. A. Ahmad, M. H. Mohd, A. Yusuf, Stability analysis and optimal control of covid-19 with convex incidence rate in Khyber Pakhtunkhawa (Pakistan), Results Phys., 20 (2021), 1-17
##[28]
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883
##[29]
Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press, Boston (1993)
##[30]
C. Leon, A. Tokarev, A. Bouchnita, V. Volpert, Modelling of the innate and adaptive immune response to SARS viral infection, cytokine storm and vaccination, Vaccines, 11 (2023), 1-30
##[31]
C. Li, J. Xu, J. Liu, Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 17 (2020), 2853-2861
##[32]
J. Lv, W. Ma, Global asymptotic stability of a delay differential equation model for SARS-CoV-2 virus infection mediated by ACE2 receptor protein, Appl. Math. Lett., 142 (2023), 1-7
##[33]
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol., 254 (2008), 178-196
##[34]
J. Mondal, P. Samui, A. N. Chatterjee, Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-19 pandemic, Eur. Phys. J. Spec. Top., 231 (2022), 3357-3370
##[35]
B. J. Nath, K. Dehingia, V. N. Mishra, Y.-M. Chu, H. K. Sarmah, Mathematical analysis of a within-host model of SARS-CoV-2, Adv. Difference Equ., 2021 (2021), 1-11
##[36]
N. N´eant, G. Lingas, Q. Le Hingrat, J. Ghosn, I. Engelmann, Q. Lepiller, A. Gaymard, V. Ferr´e, C. Hartard, J.-C. Plantier, , V. Thibault, J. Marlet, B. Montes, K. Bouiller, F.-X. Lescure, J.-F. Timsit, E. Faure, J. Poissy, C. Chidiac, F. Raffi, A. Kimmoun, M. Etienne, J.-C. Richard, P. Tattevin, D. Garot, V. Le Moing, D. Bachelet, C. Tardivon, X. Duval, Y. Yazdanpanah, F. Mentr´e, C. Laou´enan, B. Visseaux, J. Guedj, Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort, Proc. Natl. Acad. Sci., 118 (2021), -
##[37]
L. Pinky, H. M. Dobrovolny, SARS-CoV-2 coinfections: could influenza and the common cold be beneficial?, J. Med. Virol., 92 (2020), 2623-2630
##[38]
M. Sadria, A. T. Layton, Modeling within-host SARS-CoV-2 infection dynamics and potential treatments, Viruses, 13 (2021), 1-15
##[39]
T. Song, Y. Wang, X. Gu, S. Qiao, Modeling the within-host dynamics of SARS-CoV-2 infection based on antiviral treatment, Mathematics, 11 (2023), 1-19
##[40]
S. Tang, W. Ma, P. Bai, A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4, Comput. Math. Methods Med., 2017 (2017), 1-6
##[41]
M. Z. Tay, C. M., Poh, L. R´enia, P. A. MacAry, L. F. P. Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol., 20 (2020), 363-374
##[42]
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48
##[43]
S. Wang, Y. Pan, Q. Wang, H. Miao, A. N. Brown, L. Rong, Modeling the viral dynamics of SARS-CoV-2 infection, Math. Biosci., 328 (2020), 1-12
##[44]
H. Yang, J.Wei, Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response, Nonlinear Dynam., 82 (2015), 713-722
##[45]
P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao, Z.-L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270-273
]