]>
2012
4
1
108
The Analysis of Phase Synchrony of Alpha Band Waves in Detecting the Effect of Alcohol on EEG
The Analysis of Phase Synchrony of Alpha Band Waves in Detecting the Effect of Alcohol on EEG
en
en
Many researches have been conducted on alcoholics for predicting the probability of their addiction to alcohol as well as the effect of alcohol on EEG signals. Most of these researches study the amplitude of alpha waves and the power of signal in this band. In some of the studies, the waves so called as P300 have been studied. In the present research paper, phase synchrony has been used as a tool for detecting alcoholics from the control group (the individuals who do not drink alcoholic beverages). The results obtained from the study indicate that in most of samples taken from the individuals who drink alcoholic beverages, there are more records of phase asynchrony between electrodes. From the results, the percentage of differentiation authenticity of about 85% was obtained for the data and a specific pair of studied canals.
1
7
Saeed
Erfanian
Mohammad Reza
Shokoohi Nia
Mojtaba
Shokohi Nia
Phase synchrony
alcohol dependence
Alpha band
Article.1.pdf
[
[1]
P. Coutin-Churchman, R. Moreno, Y. Añez , F. Vergara, Vergara Clinical correlates of quantitative EEG alterations in alcoholic patients, Clinical Neurophysiology , 117 (2006), 740-751
##[2]
C. L. Ehlers, E. Phillips, Association of EEG alpha variants and alpha power with alcohol dependence in Mexican American young adults, Alcohol, 41 (2007), 13-20
##[3]
E. A. de Bruin, S. Bijl, C. J. Stam, K. B. E. Böcker, J. Leon Kenemans, M. N. Verbaten, Abnormal EEG synchronisation in heavily drinking students, Clinical Neurophysiology, 115 (2004), 2048-2055
##[4]
C. L. Ehlers, E. Phillips, M. A. Schuckit, EEG alpha variants and alpha power in Hispanic American and white non-Hispanic American young adults witha family history of alcohol dependence, Alcohol, 41 (2008), 99-106
##[5]
G. V. Tcheslavski, A. A. L. Beex, Phase synchrony and coherence analyses of EEG as tools to discriminate between children with and without attention deficit disorder, Biomedical Signal Processing and Control, 1 (2006), 151-161
##[6]
M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, P. A. Tass, Phase synchronization: from theory to data analysis, In: Handbook of biological physics, 4 (2001), 279-321
]
Existence of Positive Solutions for Third-order Boundary Value Problems
Existence of Positive Solutions for Third-order Boundary Value Problems
en
en
In this work, by employing the Guo-Krasnoselskii fixed point theorem, we study the existence
of positive solutions to the third-order two-point non-homogeneous boundary value problem
\[
\begin{cases}
-u'''(t)=a(t)f(t,v(t)),\\
-v'''(t)=b(t)h(t,u(t)),\\
u(0)=u'(0)=0, \alpha u'(1)+\beta u''(1)=0,\\
v(0)=v'(0)=0, \alpha v'(1)+\beta v''(1)=0,
\end{cases}
\]
where \(\alpha\geq 0\) and \(\beta\geq 0\) with \(\alpha+\beta> 0\) are constant.
8
18
N.
Nyamoradi
Positive solution
Two-point boundary value problem
Fixed point theorem.
Article.2.pdf
[
[1]
D. R. Anderson, Green's function for a third- order generalized right focal problem, Math. Anal. Appl., 288 (2003), 1-14
##[2]
D. R. Anderson, J. M. Davis, Multiple solutions and eigenvalues for third-order right focal boundary value problems, J. Math. Anal. Appl., 267 (2002), 135-157
##[3]
Z. Bai, X. Fei, Existence of triple positive solutions for a third order generalized right focal problem, Math. Inequal. Appl., 9 (2006), 437-444
##[4]
A. Boucherif, N. Al-Malki, Nonlinear three-point third order boundary value problems, Appl. Math. Comput., 190 (2007), 1168-1177
##[5]
J. R. Graef, B. Yang, Multiple positive solutions to a three point third order boundary value problem, Proceedings of the Fifth International Conference on Dynamical Systems and Differential Equations, 2005 (2005), 337-344
##[6]
M. R. Grossinho, F. M. Minhos, Existence result for some third order separated boundary value problems, Nonlinear. Anal., 47 (2001), 2407-2418
##[7]
D. Guo, V. Lakshmikantham, Nonlinear problem in Abstract Cones, Academic Press, New York (1988)
##[8]
L. J. Guo, J. P. Sun, Ya H. Zhao, Existence of positive solutions for nonlinear third-order three-point boundary value problems, Nonlinear Anal., 68 (2008), 3151-3158
##[9]
L. Hu, L. L. Wang, Multiple positive solutions of boundary value problems for systems of non-linear second-order differential equations, J. Math. Anal. Appl., 335 (2007), 1052-1060
##[10]
M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen (1964)
##[11]
R. W. Leggett, L. R. Williams, Multiple positive fixed point of nonlinear operators on orderd Banach space, Indiana Univ. Math. J., 28 (1979), 673-688
##[12]
Y. Li, Y. Guo, G. Li, Existence of positive solutions for systems of nonlinear third-order differential equations, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 3792-3797
##[13]
Y. P. Sun, Positive solutions of singular third-order three-point boundary value problem, J. Math. Anal. Appl., 306 (2005), 589-603
##[14]
Q. Yao, The existence and multiplicity of positive solutions of a third-order three-point boundary value problem, Acta Math. Appl. Sin., 19 (2003), 117-122
##[15]
H. Yu, L. Haiyan, Y. Liu, Multiple positive solutions to third-order three-point singular semipositone boundary value problem, Proceedings Mathematical Sciences, 114 (2004), 409-422
]
Dynamical Systems on Finsler Modules
Dynamical Systems on Finsler Modules
en
en
In this paper we investigate the generalized derivations and show that if E be
a simple full Finsler A-module and let \(\delta: D(\delta)\subseteq E\rightarrow E\) be a d-derivation.Then either \(\delta\)
is closable or both of the sets \(\{x\pm \delta(x): x\in E\}\) are dense in \(E\oplus E\). We also describe
dynamical systems on a full Finsler module E over \(C^*\)- algebra A as a one -parameter group.
19
24
M.
Hassani
Derivation
Finsler module
Hilbert A-module
Dynamical systems
Article.3.pdf
[
[1]
M. Amyari, A. Niknam, On homomorphisms of Finsler modules, International Mathematical Journal, Vol. 3, 277--281 (2003)
##[2]
M. Amyari, A. Niknam, A note on Finsler modules, Bull. Iran. Math. Soc., 29 (2003), 77-81
##[3]
E. Hille, R. Phillips, Functional analysis and semi-groups, Proceedings of Symposia in pure mathematics, Rhode Island (1957)
##[4]
E. C. Lance, Hilbert \(C^*\)-module: a toolkit for operator algebraists, Cambridge University Press, Cambridge (1995)
##[5]
W. L. Paschke, Inner product module over \(B^*\)-algebras, Transactions of the American Mathematical Society, 182 (1973), 443-468
##[6]
N. Phillips, N. Weaver, Modules with norms which take values in a \(C^*\)-algebra, Pacific journal of mathematics, 185 (1998), 163-181
##[7]
M. Mathieu, Elementary operators and Applications, World Scientific Publishing, Singapore (1992)
##[8]
A. Taghavi, M. Jafarzadeh, A note on Modules maps over Finsler Modules, Journal of Advances in Applied Mathematics Analysis, 2 (2007), 89-95
##[9]
S. Sakai, Operator algebras in dynamical systems, Cambridge University Press, Cambridge (1991)
]
A New Approach to Find All Solutions of Fuzzy Nonlinear Equations
A New Approach to Find All Solutions of Fuzzy Nonlinear Equations
en
en
The aim of this paper is proposing a new approach for finding all solutions of system of nonlinear fuzzy equations using Fuzzy Linear Programming (FLP). This approach is based on the FLP test for nonexistence of a solution to a system of fuzzy nonlinear equations using fuzzy simplex method. Also a numerical example has proposed to show the applicability of the method.
25
31
H.
Attari
S. H.
Nasseri
S.
Chitgar
J.
Vahidi
Fuzzy nonlinear equations
Fuzzy linear programming
Fuzzy simplex method.
Article.4.pdf
[
[1]
K. Yamamura, Finding all solutions of nonlinear equations using linear combinations of functions, Reliable Comput., 6 (2000), 105-113
##[2]
K. Yamamura, S. Suda, N. Tamura, LP narrowing: A new strategy for finding all solutions of nonlinear equations, Applied Mathematics and Computation, 215 (2009), 405-413
##[3]
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353
##[4]
G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, New Jersey (1995)
##[5]
X. Wang, E. Kerre, Reasonable properties for the ordering of fuzzy quantities (2 parts), Fuzzy Sets and Systems, 118 (2001), 375-405
##[6]
A. Ebrahimnejad, S. H. Nasseri, F. H. Lotfi, Bounded linear programs with trapezoidal fuzzy numbers, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18 (2010), 269-286
##[7]
N. Mahdavi-Amiri, S. H. Nasseri, Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables, Fuzzy Sets and Systems, 158 (2007), 1961-1978
]
Two Continuity Concepts in Approximation Theory
Two Continuity Concepts in Approximation Theory
en
en
In this note,
we study various continuity criteria
for the set-valued metric projection onto a set \(V\). Also we introduce some simpler and
more general radial continuity criteria.
32
36
Hossein
Asnaashari
Metric projection
best approximation
Chebyshev set
sun
set-valued mapping.
Article.5.pdf
[
[1]
D. Amir, F. Deutsch, Suns, moons, and quasi-polyhedra, J. Approximation Theory, 6 (1972), 176-201
##[2]
E. Asplund, Čebyšev sets in Hilbert space, Trans. Amer. Math. Soc., 144 (1969), 236-240
##[3]
J. Blatter, Zur Stetigkeit von mengenwertigen metrischen Projektionen, In: Quasi-Nullsummenspiele und dominierte Gleichgewichtspunkte in Bimatrix-Spielen, 1967 (1967), 17-38
##[4]
J. Blatter, P. D. Morris, D. Wulbert, Continuity of the set-valued metric projection, Math. Ann., 178 (1968), 12-24
##[5]
J. Blatter, Weiteste Punkte und nächste Punkte, Rev. Roumaine Math. Pures Appl., 14 (1969), 615-621
##[6]
B. Brosowski, R. Wegmann, Charakterisierung bester Approximationen in normierten Vektorrumen, J. Approximation Theory, 3 (1970), 369-397
##[7]
B. Brosowski, R. Wegmann, On the lower semi-continuity of the set-valued metric projection, J. Approximation Theory, Vol. 8, 84--100 (1973)
##[8]
B. Brosowski, Über eine Fixpunkteigenschaft der metrischen Projektion, Computing, 5 (1970), 295-302
##[9]
B. Brosowski, F. Deutsch, On some geometric properties of suns, J. Approximation Theory, Vol. 10, 245--267 (1974)
##[10]
A. L. Brown, Best n-dimensional approximation to sets of functions, Proc. London Math. Soc., 14 (1964), 577-594
##[11]
N. Dunford, J. T. Schwartz, Linear operators part I: general theory, Interscience publishers, New York (1958)
##[12]
H. Hahn, Reelle Funktionen: Erster Teil: Punktfunktionen, Chelsea Publishing Company, Chelsea (1948)
##[13]
V. Klee, Remarks on nearest points in normed linear spaces, In: Proc. Colloq. Convexity (Copenhagen), 1965 (1965), 161-176
##[14]
B. Brosowski, F. Deutsch, Some new continuity concepts for metric projections, Bull. Amer. Math. Soc., 78 (1972), 974-978
##[15]
J. Lindenstrauss, Extension of compact operators, American Mathematical Soc., 1964 (1964), 1-112
##[16]
P. D. Morris, Metric projections onto subspaces of finite codimension, Duke Math. J., 35 (1968), 799-808
##[17]
E. V. Oshman, Continuity of metric projection and some geometric properties of the unit sphere in a Banach space, Doklady Akademii Nauk, 185 (1969), 34-36
##[18]
I. Singer, On set-valued metric projections, In: Linear Operators and Approximation/Lineare Operatoren und Approximation, 217--233 (1972)
##[19]
S. B. Steckin, Approximation properties of sets in normed linear spaces, Rev. Roumaine Math. Pures Appl., 8 (1963), 5-18
##[20]
L. P. Vlasov, Approximatively convex sets in Banach spaces, Dokl. Akad. Nauk SSSR, 6 (1965), 876-879
##[21]
L. P. Vlasov, Chebyshev sets and approximatively convex sets, Matematicheskie Zametki (Russian), 2 (1967), 600-605
]
Inventory Model for Time Dependent Holding Cost and Deterioration with Salvage Value and Shortages
Inventory Model for Time Dependent Holding Cost and Deterioration with Salvage Value and Shortages
en
en
In this paper, a deterministic inventory model is developed for deteriorating items in which shortages are allowed and salvage value is incorporated to the deteriorated items. In this model the demand rate is constant, deterioration rate is time dependent with weibull’s distribution and holding cost is a linear function of time. The model is solved analytically by minimizing the total inventory cost. Numerical analysis is provided to illustrate the solution and application of the model. The model can be applied to optimizing the total inventory cost for the business enterprises where holding cost and deterioration rate both are time dependent and salvage value is incorporated to the deteriorated items.
37
47
Vinod Kumar
Mishra
Inventory
deteriorating items
shortages
time dependent deterioration
salvage value
weibull’s distribution
time varying holding cost.
Article.6.pdf
[
[1]
P. L. Abad, Optimal price and order-size for a reseller under partial backlogging, Computers and Operation Research, 28 (2001), 53-65
##[2]
P. L. Abad, Optimal pricing and lot-sizing under conditions of perishability and partial backordering, Management science, 42 (1996), 1093-1104
##[3]
P. M. Ghare, A model for an exponentially decaying inventory, J. Ind. Engng., 14 (1963), 238-243
##[4]
S. K. Goyal, B. C. Giri, Recent trends in modeling of deteriorating inventory, Eur. J. Oper. Res., 134 (2001), 1-16
##[5]
F. W. Harris, Operations and cost, Aw Shaw Co., Chicago (1915)
##[6]
K. Skouri, S. Papachristos, S. K. Goyal, An EOQ model with trade credit period depending on the ordering quantity, Journal of Information & Optimization Sciences, 29 (2008), 947-961
##[7]
K.-C. Hung , An inventory model with generalized type demand, deterioration and backorder rates, Eur. J. Oper. Res., 208 (2011), 239-242
##[8]
W. C. Lee, J. W. Wu, A note on EOQ model for items with mixtures of exponential distribution deterioration, shortages and time-varying demand, Quality and Quantity, 38 (2004), 457-473
##[9]
J. J. Liao, An EOQ model with non instantaneous receipt and exponential deteriorating item under two–level trade credit, Int. J. Prod. Econ., 113 (2008), 852-861
##[10]
V. K. Mishra, L. S. Singh, Deteriorating inventory model with time dependent demand and partial backlogging, Applied Mathematical Sciences, 4 (2010), 3611-3619
##[11]
S. Pareek, V. K. Mishra, S. Rani, An Inventory Model for time dependent deteriorating item with salvage value and shortages, Mathematics Today, 25 (2009), 31-39
##[12]
A. Roy, An inventory model for deteriorating items with price dependent demand and time varying holding cost, Advanced Modeling and Optimization, 10 (2008), 25-37
##[13]
K. Skouri, I. Konstantaras, S. Papachristos, I. Ganas, Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate, Eur. J. Oper. Res., 192 (2009), 79-92
##[14]
V. K. Mishra, L. Sahab Singh, Deteriorating inventory model for time dependent demand and holding cost with partial backlogging, International Journal of Management Science and Engineering Management, 4 (2011), 267-271
##[15]
Y. F. Huang, K. H. Hsu, A note on a buyer-vendor EOQ model with changeable lead-time in supply chain, Journal of Information & Optimization Sciences, 29 (2008), 305-310
]
Monte Carlo Simulation for Numerical Integration Based on Antithetic Variance Reduction and Haltons Sequences
Monte Carlo Simulation for Numerical Integration Based on Antithetic Variance Reduction and Haltons Sequences
en
en
Many applications, for instance in finance and in physics, require the calculation of high dimensional integrals. The Monte Carlo and quasi Monte Carlo methods are frequently used to approximate them. In this paper, we propose a new quasi Monte Carlo algorithm based on antithetic variance reduction and Halton's sequences for numerical integration. Efficiency of the new algorithm compared to the standard Monte Carlo algorithm is shown using example.
48
52
Farshid
Mehrdoust
Monte Carlo simulation
Multidimensional integration
Antithetic ariance reduction
Halton's sequences
Article.7.pdf
[
[1]
I. T. Dimov, Monte Carlo Methods for Applied Scientists, World Scientific, London (2008)
##[2]
F. Mehrdoust, A. Pourdarvish, F. Norouzi, B. Fathi Vajargah, F. Norouzi Saziroud, Some Advantages on Monte Carlo Integration using Variance Reduction Procedures, International Journal of Advanced Research in Computer Science, Vol. 1, 220--224 (2010)
##[3]
J. M. Hammersly, D. C. Handscomb, Monte Carlo methods, Methuen, London (1964)
##[4]
A. Karaivanova, I. Dimov, Error analysis of an adaptiv Monte Carlo method for numerical integration, Mathematics and Coputers in Simulation, 47 (1998), 201-213
##[5]
E. L. Lehmann, Some concepts of dependence, The Annals of Mathematical Statistics, 47 (1966), 1137-1153
##[6]
R. Y. Rubinstein, Simulation and the Monte Carlo method, John Wiley & Sons, New York (1981)
##[7]
I. M. Soboĺ, Quasi Monte Carlo methods, Progress in Nuclear Energy, 24 (1990), 55-61
]
Existence Solution for Class of p-Laplacian Equations
Existence Solution for Class of p-Laplacian Equations
en
en
We study existence of positive solution of the equation \[-\Delta_pu=\lambda|u|^{p-2}u+f(x,u)\]
with zero Dirichlet boundary conditions in bounded domain \(\Omega\in \mathbb{R}^n\) where \(\Delta_p\) denotes the p-laplacian operator defined by \(-\Delta_pz=div(|\nabla z|^{p-2}\nabla z); p,\lambda\in \mathbb{R}\) and \(p>1\).Our main result establishes the existence of weak solution.
53
59
Malihe
Bagheri
Mahnaz
Bagheri
p-laplacian
weak solution
homogenous.
Article.8.pdf
[
[1]
P. Drábek, Y. X. Huang, Bifurcation problems for the p-Laplacian in \(\mathbb{R}^n\), Trans. Amer. Math. Soc., Vol. 349, 171--188 (1997)
##[2]
P. Drábek, Y. X. Huang, Multiple positive solutions of quasilinear elliptic equations in \(\mathbb{R}^n\), Nonlinear Analysis, Vol. 37, 457--466 (1999)
##[3]
S. I. Pohozaev, About one approach to the nonlinear equations, Dokl. Akad. Nauk. (RAC USSR), 241 (1979), 1327-1331
##[4]
S. I. Pohozaev, On fibering method for the solution of nonlinear boundary value problems, Trudy Matematicheskogo Instituta imeni VA Steklova, 192 (1990), 140-163
##[5]
A. Anane, Simplicité et isolation de la premiere valeur propre du p-laplacien avec poids, Comptes rendus de l'Académie des sciences, 305 (1987), 725-728
##[6]
G. Barles , Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, In: Annales de la Faculté des sciences de Toulouse: Mathématiques, 9 (1988), 65-75
]
Multiple Solution to (p, q)-Laplacian Systems with Concave Nonlinearities
Multiple Solution to (p, q)-Laplacian Systems with Concave Nonlinearities
en
en
In this paper we study the (p,q)-Laplacian systems with concave nonlinearities. Using some asymptotic behavior
60
70
G. A.
Afrouzi
M.
Bai
Nonlinear boundary value problem
Concave nonlinearity
Variational method
(p،q)-Laplacian systems
Multiple solutions.
Article.9.pdf
[
[1]
A. Ambrosetti, H. Brezis, C. Cerami, Combined effects of concave and covex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543
##[2]
G. A. Afrouzi, S. Mahdavi, Z. Naghizadeh, Existence of multiple solutions for a class of (p,q)-Laplacian systems, Nonlinear Anal., 72 (2010), 2243-2250
##[3]
G. A. Afrouzi, M. Bai, Elliptic P-Laplacian equations with indefinite concave nonlinearities near the origin, Advances in Theoretical and Applied Mathematics, 7 (2012), 51-57
##[4]
S. Li, S. Wu, H. S. Zhou, Solutions to Semilinear Elliptic Problems with Combined Nonlinearities, J. Differential Equations, 185 (2002), 200-224
##[5]
J. P. Garcia Azorero, I. Peral Alonso, J. J. Manfredi, Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2 (2000), 385-404
##[6]
J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202
##[7]
L. Shi. X. Chang, Multiple solutions to p-Laplacian problems with concave nonlinearities, J. Math. Anal. Appl., 363 (2010), 155-160
##[8]
T. F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 263-270
##[9]
X.-X. Zhao, C.-L. Tang, Resonance problems for (p, q)-Laplacian systems, Nonlinear Anal., 72 (2010), 1019-1030
]
Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems
Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems
en
en
A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, \(K_p, K_i\), and \(K_d\), are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Vanderpol oscillator is used as an illustrative to show the efectiveness of the proposed robust a PID controller.
71
80
Yaghoub
Heidari
Rashin
Nimaeeb Rad
Robust
PID
Adaptive
Vanderpol
Chaos
Article.10.pdf
[
[1]
H. Khalil, Noninear systems, Prentice Hall, New Jersey (1996)
##[2]
W. D. Chang, J. J. Yan, Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, Chaos Solitons Fractals, 26 (2005), 167-175
##[3]
K. Hackl, C. Y. Yang, A. H. D. Cheng, Stability, bifurcation and chaos of non-linear structures with control--I. Autonomous case, Int. J. Non-Linear Mech., 28 (1993), 441-454
##[4]
A. H. D. Cheng, C. Y. Yang, K. Hackl, M. J. Chajes, Stability, bifurcation and chaos of non-linear structures with control--II. Non-autonomous case, Int. J. Non-Linear Mech., 28 (1993), 549-565
##[5]
R. Tchoukuegno, P. Woafo, Dynamics and active control of motion of a particle in a /6 potential with a parametric forcing, Physica D: Nonlinear Phenomena, 167 (2002), 86-100
##[6]
R. Tchoukuegno, B. R. N. Nbendjo, P. Woafo, Linear feedback and parametric controls of vibration and chaotic escape in a /6 potential, Int. J. Non-Linear Mech., 38 (2003), 531-541
##[7]
B. R. N. Nbendjo, R. Tchoukuegno, P. Woafo, Active control with delay of vibration and chaos in a double-well-Duffing oscillator, Chaos Solitons Fractals, 18 (2003), 345-353
##[8]
R. Yamapi, B. R. Nana Nbendjo, H. G. Enjieu Nkadji , Dynamics and active control of a motion of a driven multi-lmit-cycle Van der Pol oscillator, Int. J. Bifurcation Chaos, Vol. 17, 1343--1354 (2007)
##[9]
K. J. Åström, T. Hägglund, Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatica, 20 (1984), 645-651
##[10]
T. Hägglund, K. J. Åström, Industrial adaptive controllers based on frequency response techniques, Automatica, 27 (1991), 599-609
##[11]
A. Leva, PID autotuning algorithm based on relay feedback, IEE Proceedings D-Control Theory and Applications, 140 (1993), 328-338
##[12]
J. Lee, S. W. Sung, Comparison of two identification methods for PID controller tuning, AIChE J., 39 (1993), 695-697
##[13]
Q. G. Wang, B. Zou, T. H. Lee, Q. Bi, Auto-tuning of multivariable PID controller from decentralized relay feedback, Automatica, 33 (1997), 319-330
##[14]
D. L. Tsay, H. Y. Chung, C. J. Lee, The adaptive control of nonlinear systems using the Sugeno-Type of fuzzy logic, IEEE Trans. Fuzzy, Vol. 7, 225--229 (1999)
##[15]
Y. M. Park, M. S. Choi, K. Y. Lee, An optimal tracking neuro-controller for nonlinear dynamic systems, IEEE Trans. Neural Netw., 7 (1996), 1099-1110
##[16]
L. X. Wang, Adaptive fuzzy systems and control: design and stability analysis, Prentice-Hall, New Jersey (1994)
##[17]
L. X. Wang, A course in fuzzy systems and control, Prentice-Hall, New Jersey (1997)
##[18]
C. T. Chen, S. T. Peng, Intelligent process control using neural fuzzy techniques, J. Process Contr., 16 (1999), 493-503
##[19]
M. A. Mayosky, I. E. Cancelo, Direct adaptive control of wind energy conversion systems using Gaussian networks, IEEE Trans. Neural Netw., 10 (1999), 898-905
##[20]
W. D. Chang, R. C. Hwang, J. G. Hsieh, Stable direct adaptive neural controller of nonlinear systems based on single auto-tuning neuron, Neurocomputing, 48 (2002), 541-554
##[21]
F. J. Lin, W. J. Hwang, R. J. Wai , A supervisory fuzzy neural network control system for tracking periodic inputs, IEEE Trans. Fuzzy Syst., 7 (1999), 41-52
]
Transmission Loss Allocation in the Deregulated Electricity Market Based on the Cooperative Game Theory
Transmission Loss Allocation in the Deregulated Electricity Market Based on the Cooperative Game Theory
en
en
Changing the structure of electrical energy markets from traditional to the restructured state, considering the loss allocation has been unavoidable. The importance of this matter is because the amount of loss consist significant part of total electrical energy. Loss in power system is a nonlinear function of power so using linear methods could not be efficient. On the other hand, applied function must consider both network characterizes and participation rate in power supplying and power consumption. The purpose of this paper is to present an applicable and modern solution based on the cooperative game theory for loss allocation of transmission lines in both pool and bilateral markets. This method has been tested on a 4 bus systems and a 14 bus IEEE.
81
92
Ahmad
Rostamian
Mostafa
Hosseinzadeh
Ahmad
Shokrollahi
Game Theory
Coalitions
Players
Loss allocation
Shapley Value
Article.11.pdf
[
[1]
E. A. Belati, G. R. M. Dacosta, Transmission loss allocation based on optimal power flow and sensitivity analysis, International Journal of Electrical Power & Energy Systems, 30 (2008), 291-295
##[2]
M. J. Connejo, J. M. Arroyo, N. Alguacil, A. L. Guiaro, Transmission loss allocation: a comparison of Different Practical Algorithm, IEEE Power Engineering Review, 22 (2002), 66-66
##[3]
A. Parastar, B. Mozafari, A. Pirayesh, H. Omidi, Transmission loss allocation thou modified z-bus, Energy Convers. Manage., 52 (2010), 725-756
##[4]
V. S. C. Lim, J. D. F. McDonald, T. K. Saha, Development of a new loss allocation method for a hybrid electricity market using graph theory, Electric Power Systems Research, 79 (2009), 301-310
##[5]
A. Kazemi, Electrical Power Systems, Industrial and Science University Publisher, Tehran (1999)
##[6]
D. S. Kirschen, G. Strbac, Fundamentals of Power System Economics, John Wiley & Sons, New York (2004)
##[7]
F. Azevedo, H. M. Khodr, Z. A. Vale, Transmission Loss allocation Using Cooperative Game Theory: A Comparative Study, 6th International Conference on the European Energy Market, 2009 (2009), 1-6
##[8]
J. Mepokee, D. Enke, B. Chowdhury, Loss allocation for Transmission Investment Using Agent-based Game Theory, International Conference on Probabilistic Methods Applied to Power Systems (Iowa State University), 2004 (2004), 545-550
##[9]
D. A. Lima, J. Contreras, A. Padilha-Feltrin, A cooperative game theory analysis for transmission loss allocation, Electric Power Systems Research, 78 (2008), 264-275
##[10]
C. Unsihuay, O. R. Saavedra, J. W. M. Lima, A METHODOLOGY BASED ON CIRCUIT LAWS TO TRANSMISSION LOSS ALLOCATION IN ELECTRICITY MARKETS, Universidade Federal do Maranhão, 2010 (2010), 1-6
##[11]
A. J. Conejo, F. D. Galiana, I. Kockar, Z-Bus Loss Allocation, IEEE Transactions on Power Systems, 16 (2001), 105-110
##[12]
P. A. Kattuman, J. W. Bialek, N. Abi-Samra, Electricity tracing and co-operative game theory, Proceedings of the Power System Computation Conference, 1999 (1999), 238-243
##[13]
Z. Yang, Y. Song, R. Cao, G. Tang, Analysis on Bidding Strategy of Power Provider by Game Theory, International Conference on Power System Technology, 2006 (2006), 1-6
##[14]
Y. De, L. Wei, Y. Peng-ju, X. Zhi-yong, Generation Biding Strategy Based on Game Theory, Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008 (2008), 453-456
##[15]
D. Songhuai, Z. Xinghua, M. Lu, X. Hui, Anovel nucleolus-based loss allocationmethod in bilateral electricity markets, IEEE Trans. Power Syst., 21 (2006), 28-33
##[16]
V. S. C. Lim, T. K. Saha, J. D. F. McDonald, Assessing the Competitiveness of Loss Allocation Methods in a Deregulated Electricity Market, IEEE Power Engineering Society General Meeting, 2006 (2006), 1-10
]
Random Numbers and Monte Carlo Approximation in Fuzzy Riemann Integral
Random Numbers and Monte Carlo Approximation in Fuzzy Riemann Integral
en
en
In this paper, we want to improve Monte Carlo approximation in fuzzy Riemann integral
it means that calculate exact amount of fuzzy Riemann integral based on \(\alpha\)-level sets
with partition of generating function of random numbers' RAND' in commercial
software MATLAB.
93
101
Behuroz
Fathi-Vajargah
Akram
Heidary-Harzavily
fuzzy Riemann integral
\(\alpha\)-level sets.
Article.12.pdf
[
[1]
H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Boston (1991)
##[2]
H.-C. Wu , The fuzzy Riemann integral and its numerical integration, Fuzzy Sets and Systems, 110 (2000), 1-25
##[3]
T. M. Apostol, Mathematical Analysis, Addison-Wesly, Reading (1974)
##[4]
J. J. Buckly , Fuzzy probability and statistics, Springer, Berlin (2006)
##[5]
H.-C. Wu, The improper fuzzy Riemann integral and its numerical, Inform. Sci., 111 (1998), 109-137
##[6]
H.-C. Wu, Evaluate Fuzzy Riemann Integrals Using the Monte Carlo Method, Journal of Mathematical Analysis and Applications, 264 (2001), 324-343
##[7]
M. S. Bazarra, C. M. Shetty, Nonlinear programming, John Wiley & Sons, New York (1993)
##[8]
W. Rudin , Real and Complex Analysis, McGraw-Hill, New York (1987)
##[9]
M. Sakawa, H. Yano, Feasibility and pareto optimality for multiobjective linear and linear fractional programming problems with fuzzy parameters, in: The interface between artificial intelligence and operations research in fuzzy environment, 1990 (1990), 213-232
##[10]
J. R. Sims, Z. Y. Wang, Fuzzy measures and fuzzy integrals: an overview, Internat. J. Gen. Systems, 17 (1990), 157-189
]
A Combined Method for the Numerical Solution of Boundary Value Problems of Second Order
A Combined Method for the Numerical Solution of Boundary Value Problems of Second Order
en
en
In this work, a technique based on combination between collocation and spline
method along with the shooting method is proposed for the solution of boundary value
problem of order 2. Numerical results show that the method is simple and effective.
102
109
R.
Darzi
A.
Neamaty
Y.
Darzi
B.
Mohammadzadeh
Boundary value problem
Collocation method
Shooting method.
Article.13.pdf
[
[1]
B. Batiha, M. S. M. Noorani, I. Hashim, E. S. Ismail, The multistage variational iteration method for a class of nonlinear system of ODEs, Physica Scripta, 76 (2007), 388-392
##[2]
J. H. He, Variational iteration method for autonomous ordinary differential system, Appl. Math. Comput., 114 (2000), 115-123
##[3]
J. Biazar, E. Babolian, R. Islam, Solution of the system of ordinary differential equations by Adomian decomposition method, Appl. Math. Comput., 147 (2004), 713-719
##[4]
J. Biazar, R. Islam, Solution of wave equation by Adomian decomposition method and the restrictions of the method, Appl. Math. Comput., 147 (2004), 713-719
##[5]
D. Kaya, M. E. El-Sayed, A numerical solution of the Klein–Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156 (2004), 341-353
##[6]
S. Momani, Z .Odibat, Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488-494
##[7]
A. Neamaty, R. Darzi, Variational iteration method for eigenvalues of fractional sturm-liouville problem, Aus. J. Basic Appl. Sci., 4 (2010), 646-651
##[8]
A. Neamaty, R. Darzi, Comparison between the Variational iteration method and the Homotopy perturbation method for the Sturm-Liouville differential equation, Boundary Value Problems, 2010 (2010), 317-369
##[9]
D. D. Ganji, M. Nurollahi, M. Rostamian, A comparison of Variational iteration method with Adomian decomposition method in some highly nonlinear equations, Int. J. Sci. Techn., 2 (2007), 179-188
##[10]
M. A. Noor, S. T. Mohyud-Din, Variational iteration method for solving initial and boundary value problems of Bratu-type, Int. J. Appl. Math., 3 (2008), 89-99
##[11]
B. Batiha, M. S. M. Noorani, I. Hashim, Application of variational iteration method to a general Riccati equation, Int. Math. Froum, 2 (2007), 2759-2770
##[12]
S. T. Mohyud-Din, M. A. Noor, Variational iteration method for solving discrete KdV equation, Bull. Inst. Math., 5 (2010), 69-73
##[13]
L. Blank, Numerical treatment of differential equations of fractional order, Manchester Centre for Computational Mathematics (Numerical Analysis Report), 287 (1996), 1-16
##[14]
E. A. Rawashdeh, Numerical solution of semidifferential equation by collocation method, Appl. Math. Comput., 174 (2006), 869-876
##[15]
M. Lia, S. Jimenezc, N. Niea, T. Tanaga, L. Vazqueze, Solving two-point boundary value problems of fractional differential equation by spline collocation methods, International Journal of Modeling, Simulation, and Scientific Computing, 1 (2010), 117-132
]
Ergodicity of Fuzzy Markov Chains Based on Simulation Using Halton Sequences
Ergodicity of Fuzzy Markov Chains Based on Simulation Using Halton Sequences
en
en
We first introduce fuzzy finite Markov chains and present some of their fundamental properties based on possibility theory. We also bring in a way to convert fuzzy Markov chains to classic Markov chains. In addition, we simulate fuzzy Markov chain using different sizes. It is observed that the most of fuzzy Markov chains not only do have an ergodic behavior, but also they are periodic. Finally, using Halton quasi-random sequence we generate some fuzzy Markov chains which compared to the ones generated by the RAND function of MATLAB. Therefore, we improve the periodicity behavior of fuzzy Markov chains.
380
385
Behrouz
Fathi Vajargah
Maryam
Gharehdaghi
Fuzzy Markov Chains
Stationary Distribution
Ergodicity
Simulation
Halton Quasi-Random Sequence.
Article.14.pdf
[
[1]
R. Araiza, G. Xiang, O. Kosheleva, D. Skulj, Under interval and fuzzy uncertainty, symmetric Markov chains are more difficult to predict, Annual Meeting of the North American Fuzzy Information Processing Society (Los Alamitos), 2007 (2007), 526-531
##[2]
K. E. Avrachenkov, E. Sanchez, Fuzzy markov chains: Specifities and properties, 8th IPMU 2000 Conference (Madrid, Spain), 2000 (2000), 1851-1856
##[3]
J. J. Buckley, Fuzzy Probability and Statistics, Springer-Verlag, Berlin (2004)
##[4]
M. Gavalec, Computing orbit period in max-min algebra, Discrete Applied Mathematics, 100 (2000), 49-65
##[5]
M. Gavalec, Periods of special fuzzy matrices, Tatra Mt. Math. Publ., 16 (1999), 47-60
##[6]
J. E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, New York (2005)
##[7]
D. Kalenatic, J. C. Figueroa-García, C. A. Lopez, Scalarization of Type-1 Fuzzy Markov Chains, International Conference on Intelligent Computing, 2010 (2010), 110-117
##[8]
E. Sanchez, Eigen fuzzy sets and fuzzy relations, Journal of Mathematical Analysis and Applications, 81 (1981), 399-421
##[9]
M. G. Thomason, Convergence of powers of a fuzzy matrix, Journal of Mathematical Analysis and Applications, 57 (1977), 476-480
]