]>
2014
8
3
138
Notes and Examples on Intuitionistic Fuzzy Metric Space
Notes and Examples on Intuitionistic Fuzzy Metric Space
en
en
Park introduced and discussed in [11] a notion of intuitionistic fuzzy metric space which is based both on the idea of intuitionistic fuzzy set due to Atanassov [1], and the concept of a fuzzy metric space given by George and Veeramani in [5] and [9]. We show an application and some examples of intuintionistic fuzzy metric spaces.
187
192
H.
Shojaei
Fuzzy metric
Compact subset
Intuitionistic fuzzy metric spaces
Hausdorff fuzzy metric.
Article.1.pdf
[
[1]
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1386), 87-96
##[2]
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht (1993)
##[3]
J. Buckley, E. Eslami, An Introduction to fuzzy logic and fuzzy set, Physica-verlag , Heidelberg (2002)
##[4]
R. Engelking, General topology, PWN-Polish Sci. Publ, Warsaw (1977)
##[5]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems , 64 (1994), 395-399
##[6]
A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math., 3 (1995), 933-940
##[7]
V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems , 115 (2000), 485-489
##[8]
V. Gregori, S. Romaguera, A. Sapena, Uniform continuity in fuzzy metric spaces, Rend. Istit. Mat. Univ. Trieste , 32 (2001), 81-88
##[9]
V. Gregori, S. Romaguera, P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals , 28 (2006), 902-905
##[10]
D. Mihet, A Banach contraction theorem in fuzzy metric spaces , Fuzzy Sets and Systems, 431-439 (to appear)
##[11]
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons &Fractals, 22 (2004), 1039-46
##[12]
J. Rodriguez-Lopez, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004), 273-283
##[13]
N. Sinisa.Jesic, A. Natasa. Babacev, Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition, Chaos, Solitons &Fractals , 37 (2008), 675-687
##[14]
H. Shojaei, K. Banaei, N. Shojaei, , J. Math. Computer Sci., 6 (2013), 1-118
##[15]
H. Shojaei, R. Mortezaei, , J. Math. Computer Sci., 6 (2013), 201-209
]
A Method for Calculating Interval Linear System
A Method for Calculating Interval Linear System
en
en
In this paper we represent an efficient algorithm for finding the interval solution for the interval linear system. This algorithm applies the optimization problem based on gradient vector in order to obtain the lower bound and upper bound of the interval solution.
193
204
Shohreh
Abolmasoumi
Majid
Alavi
Interval number
Interval linear system
Interval matrix
Cramer’s rule
Gradient vector
Multivariate function.
Article.2.pdf
[
[1]
M. Alperbazaran, Calculation fuzzy inverse matrix using fuzzy linear equation system, Applied Soft Computing , 12 (2012), 1810-1813
##[2]
G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York (1983)
##[3]
T. Allahviranloo, Successive over relaxation iterative method for fuzzy system of linear equation, Applied Mathematics and Computation , 162 (2005), 189-196
##[4]
M. Dehngan, B. Hashemi, Iterative solution of fuzzy linear systems, Applied Mathematics and Computation , 175 (2006), 645-674
##[5]
D. Dubois, H. Prade, Systems of linear fuzzy constraints, International Journal of Systems Science, 9 (1978), 613-626
##[6]
R. Fuller, Neural Fuzzy Systems , Donner visiting professor Abo Akademi university , ISBN 951-650-624-0, ISSN 0358-5654. (1395)
##[7]
K. Ganesan, P. Veeramani , On Arithmetic Operations of Interval Numbers, International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, 13 (6) (2005), 619-631
##[8]
K. Ganesan, On Some Properties of Interval Matrices, International Journal of Computational and Mathematical Sciences, 1 (2) (2007), 92-99
##[9]
S. Markov, Computation of algebraic solution to interval system via system of coordinates, Scientific computing, Validated Numerics, Interval methods, Eds. W. Kraemer, J. Wolff von Gudenberg, Kluwer, (2001), 103-114
##[10]
E. Moor, R. Baker Kear foot, Michael.J. Cloud, Introduction to interval Analysis, (studies in Applied Mathematics, SILM , philaderphia,PA, USA, (1979), 19104-2688
##[11]
Sukanta Nayak, S. Chakraverty, A new Approch to solve Fuzzy system of linear Equation, contents list available at tjmcs, journal of mathematics and computer science , 7 (2013), 205-212
##[12]
S. H. Nasseri, F. Zahmatkesh, Huang method for solving full fuzzy linear system, The journal of Mathematics and Computer Science, 1 (2010), 1-5
##[13]
T. Nirmal, D. Datta, H. S. Kushwaha, K. Ganesan., Invers interval matrix: E new approach Applied Mathematics, Sciences, Vol.5, 201, no 13 (2011), 607-624
##[14]
E. R. Hansen, R. R. Smith, Interval arithmetic in matrix computations, Part 2, SIAM. Journal of Numerical Analysis, 4 (1967), 1-9
##[15]
D. S. Watkins, Fundamentals of Matrix Computations, Wiley-Interscience Pub., New York (2002)
]
A Xml-based Representation of Timing Information for Wcet Analysis
A Xml-based Representation of Timing Information for Wcet Analysis
en
en
The Worst-Case Execution Time (WCET) analysis is an important stage in development process and verification of hard real-time systems. In this article the use of XML as a standard for exchanging timing information amongst timing analysis tools is proposed. Timing information resulted from automatic analysis of programs can be represented in XML format. Considering the type of information required for estimating the worst case execution time of programs, a set of XML tags is offered in this paper. Timing information resulted from analyzing a program by a timing analysis tool could be annotated within the program. The annotated code could be simply applied by other tools for relatively more accurate estimation of the worst case execution times. The paper also clears the way for future studies on using XML-based representation for extraction of information.
205
214
Saeed
Parsa
Mehdi
Sakhaei-nia
Real-time systems
WCET
program representation
Article.3.pdf
[
[1]
, A Retargetable Compiler for ANSI C website, URL: http://www.cs.princeton.edu/software/lcc/ , ()
##[2]
A. Aguiar, G. David, G. Badros , JavaML 2.0:Enriching the Markup Language for Java Source Code, XML: Aplicacoes e Tecnologias Associadas (XATA 2004), Porto, Portugal (2004)
##[3]
G. Bernat, A. Colin, S. M. Petters , pWCET: a Tool for Probabilistic Worst-Case Execution Time Analysis of Real-Time Systems, Technical Report YCS-2003-353 , Department of Computer Science, University of York, UK (2003)
##[4]
K. Chen, S. Malik, D. August , Retargetable static timing analysis for embedded software, Proceedings of the 14th international symposium on Systems synthesis, Canada (2001)
##[5]
A. Ermedahl , A Modular Tool Architecture for Worst-Case Execution Time Analysis, PhD dissertation, Dept. of Information Technology, Uppsala Univ. Uppsala, Sweden (2003)
##[6]
C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, R. Wilhelm , Reliable and precise WCET determination for a real-life processor, In Proceedings of the First International Workshop on Embedded Software, LNCS 2211, Springer, (2001), 469-485
##[7]
J. Gustafsson , Analysing Execution-Time of Object-Oriented Programs using Abstract Interpretation, PhD thesis, Uppsala University, Uppsala, Sweden (2000)
##[8]
J. Gustafsson, A. Ermedahl, B. Lisper , Towards a flow analysis for embedded system C programs, In Proc. 10th IEEE International Workshop on Object-oriented Real-time Dependable Systems , (WORDS 2005) (2005)
##[9]
J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, L. Källberg , ALF - A Language for WCET Flow Analysis, Proc. Ninth workshop on Worst-Case Execution Time Analysis (WCET'09), Dublin, Ireland (2009)
##[10]
C. Healy, M. Sjodin, D. B. Whalley , Bounding Loop Iterations for Timing Analysis, In Proc. IEEE Real-Time Technology and Aplications Symposium, (1998), 12-21
##[11]
C. Healy, M. Sjodin, V. Rustagi, D. Whalley, R. Engelen , Supporting timing analysis by automatic bounding of loop iterations, Real-Time Systems, 18(2/3) (2000), 121-148
##[12]
R. Holt, A. Winter, A. Schürr , GXL: Towards a Standard Exchange Format, Working Conference on Reverse Engineering, (2000)
##[13]
E. Hu, G. Bernat, A. Wellings , A Static Timing Analysis Environment Using Java Architecture for Safety Critical Real-Time Systems, Proc. of the 7th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems WORDS-2002, , (2002), 77-84
##[14]
D. Kästner, R. Wilhelm, R. Heckmann, M. Schlickling, M. Pister, M. Jersak, K. Richter, C. Ferdinand , Timing Validation of Automotive Software, ISoLA , (2008), 93-107
##[15]
K. Keutzer, S. Malik, A. Newton, J. Rabaey, A. Sangiovanni-Vincentelli , System Level Design: Orthogonolization of Concerns and Platform-Based Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12) (2000)
##[16]
R. Kirner, J. Knoop, A. Prantl, M. Schordan, I. Wenzel, WCET Analysis: The Annotation Language Challenge, In Post-Workshop Proceedings of the 7th International Workshop on Worst-Case Execution Time Analysis, Pisa, Italy (2007)
##[17]
T. Lundqvist , A WCET Analysis Method for Pipelined Microprocessors with Cache Memories, PhD thesis, Dept. of Computer Engineering, Chalmers University , Sweden (2002)
##[18]
G. McArthur, J. Mylopoulos, S. Ng , An Extensible Tool for Source Code Representation Using XML, Working Conference on Reverse Engineering, (2002)
##[19]
Michael L. Collard, Huzefa H. Kagdi, Jonathan I. Maletic, An XML-based Lightweight C++ Fact Extractor, International Workshop on Program Comprehension, (2003)
##[20]
C. Russell, R. Dewar , XML Encoded Reverse Engineering of Java to UML, Technical Report HW-MACS-TR-0007, (2003)
##[21]
C. Sandberg, A. Ermedahl, J. Gustafsson, B. Lisper , Faster WCET flow analysis by program slicing, ACM SIGPLAN Notices, v.41 n.7 (2006)
##[22]
P. Sandström , A look at Execution Time Analysis and Measuring Interrupt Latency, Master Thesis, Mälardalen University (2000)
##[23]
H. Simic, M. Topolnik , Prospects of encoding Java source code in XML, In Proc. of the 7th International Conference on Telecommunications, Zagreb, Croatia (2003)
##[24]
V. Suhendra, T. Mitra, A. Roychoudhury, T. Chen , Efficient Detection and Exploitation of Infeasible Paths for Software Timing Analysis, Design Automation Conference, 43rd ACM/IEEE (2006)
##[25]
R. Wilhelm, J. Engblohm, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenström , The Worst-Case Execution Time Problem - Overview of Methods and Survey of Tools, in ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3 (2008), 1-53
##[26]
P. Lokuciejewski, P. Marwedel , Worst-Case Execution Time Aware Compilation Techniques for Real-Time Systems, , Springer (2010)
##[27]
S. Bygde, A. Ermedahl, B. Lisper , An efficient algorithm for parametric WCET calculation, Journal of Systems Architecture , Volume 57, Issue 6, 614-624 (2011)
##[28]
A. Marref , Evolutionary techniques for parametric wcet analysis, In Tullio Vardanega, editor, WCET, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 23 (2012), 103-115
]
Comparison Between Artificial Neural Network Learning Algorithms for Prediction of Student Average Considering Effective Factors in Learning and Educational Progress
Comparison Between Artificial Neural Network Learning Algorithms for Prediction of Student Average Considering Effective Factors in Learning and Educational Progress
en
en
In this project, by using different learning algorithms in the form of 37 input parameters of
network for predicting average considering effective factors in learning and educational
progress, the Perceptron artificial neural network have been studied.
The requisite data have been obtained through handing out questionnaires between 400
students of Payame Noor University majoring in computer engineering, information
technology and computer science.
For recognizing the best learning algorithm, 13 common algorithms considering factors
such as training time, the percentage of accountability, the index of efficiency ( the mean
squared errors), and the number of epoch have been studied after error propagation. Finally
the LM algorithm was recognized as the best learning algorithm for prediction of average.
215
225
Saeed
Ayat
Zabihollah Ahmad
Pour
learning algorithm
artificial neural network
MLP
prediction of average.
Article.4.pdf
[
[1]
M. R. Mustafa, R. Rezaur, S. Saiedi, M. He, River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms_A case Study Malaysia, Water Resour manage, 26 (2012), 1879-1897
##[2]
N. I. Daliakopoulos, P. Couliblay, H. K. Tsanis, Ground water level forcasting using artificial neural networks, J. Hydrol., 309 (2005), 229-240
##[3]
M. T. Hagan, H. B. Demuth, M. H. Beal, Neutral Network Design, PWS, Beston (2005)
##[4]
B. D. Ripley, R. M. Reipley, Neural networks as statistical methods in survival analysis, Journal of statistics, (2006), 409-456
##[5]
G. L. Dee, N. Bakhary, A. Abdul Rahman, B. Hisham Ahmad, A Comparison of Artificial Neural Network Learning Algorithms for Vibration- Based Damage Detection, Journal of Advanced Materials Research, 163-167 (2011), 2756-60
##[6]
A. Fbrizzio, L. Edna, D. Christian, A. Gilberto, C. Antonio, V. Paschoarelli, Recursive diameter Prediction And Volume Calculation of Eucalyptus Trees Using Multilayer Perceptron Networks, Applied Soft Comuting, 12 (2012), 2030-2039
##[7]
H. Demuth, M. Beale, Neural Network Toolbox User's Guide , Copyright 1992-2002, By The Math Works. Inc., 4 (2000), 1-480
##[8]
K. Abhishek, M. P. Singh, S. Ghosh, A. Anand, Weather Forecasting Model Using Artificial Neural Network, Procedia Technology, 4 (2012), 311-318
##[9]
A. Lakdashti, R. Yousedi, Kh. Khatiri , Effect of Simulated Education Software on Student Learining and Compare it With Traditional Method of Teaching, Journal of Information and communication technology in education, in Persian. , 3 (1390), 5-21
##[10]
A. Akbari , Methods of Study, Faiz Kashani, in Persian. , Tehran (1382)
##[11]
M. Parsa, Psychology of Learning, Fourth Edition, Payame Noor, in Persian. , Tehrn (1385)
##[12]
S. Sattari, E. Jaafar Nezhad, Factors affecting the utilization of visual aids in the teaching - learning from the perspectives of teachers in Mazandaran, Journal of Information and communication technology in education, in Persian , 2 (1389), 6-20
##[13]
E. Khalkhali, Z. Shakibaee, M. Andesh, Meta-analysis of the effects of ICT on professional development of teachers, Journal of Information and communication technology in education, in Persian. , 3 (1390), 165-183
##[14]
M. Behrangi, Teaching models, Kamal Tarbiat, in Persian , Tehran (1387)
##[15]
M. kantardzic, Data Mining: Concepts, Models, Methods and Algorithms, Second Edition, John Wiley (2011)
##[16]
M. Akbari, A. Ranaee, H. Namaghi, Assessment of desertification sensitivity parameters using artificial neural network , Journal of Soil and Water (Agricultural Sciences and Technology), in Persian. , 25 (1390), 398-410
##[17]
T. Sabzevari, R. Mohammad Pour, M. E. Zemorrodian, Evaluation parameters of earth dam failures using neural networks, First National Congress on Civil Engineering, , 12-14 May, in Persian, Sharif University (2003)
##[18]
M. B. Menhaj, Foundations of Neural Networks , Vol. 1, Amir Kabir University, in Persian. , Tehran (1387)
##[19]
S. Shokr Beygi, A. Afkari Sayyah, H. Shayeghi Moghanloo, E. Shokouhian, Effects of temperature and Cushioned surface on the apple contusion volume Created by Tension and Predict it using artificial neural network, Journal of Food Science and Technology, in Persian., 31 (1390), 85-94
##[20]
A. Ali Pour, S. Kalantarian, The relationship between handedness with academic achievement of middle school students, Journal of School Psychology, in Persian, 1 (1391), 7-26
]
A Numerical Method for Space Fractional Diffusion Equations Using a Semi-disrete Scheme and Chebyshev Collocation Method
A Numerical Method for Space Fractional Diffusion Equations Using a Semi-disrete Scheme and Chebyshev Collocation Method
en
en
In the present paper, a numerical approach to efficiently calculate the solution of space fractional
diffusion equations is investigated. The finite difference scheme and Chebyshev collocation method is
applied to solve this problems. Also, the matrix form of the proposed method is obtained. The
numerical examples and comparison with other methods shows that the present method is effective.
226
235
Hadi
Azizi
Ghasem Barid
Loghmani
Fractional diffusion equation
Finite difference
Collocation
Chebyshev polynomials
Article.5.pdf
[
[1]
G. A. Afrouzi, R. A. Talarposhti, H. Ahangar , Explicit analytical solution for a kind of time-fractional evolution equations by He’s Homotopy perturbation methods, J. Math. Comput. Sci. ( TJMCS) , 4 (2012), 278-282
##[2]
Z. Avazzadeh, Z. Beygi Rizi, F. M. Maalek Ghaini, G. B. Loghmani, A numerical solution of nonlinear parabolic-type Volterra partial integrodifferential equations using radial basis functions, Eng. Anal. Bound. Elem. , 36 (2012), 881-893
##[3]
R. Darzi, B. Mohammadzade, S. Mousavi, R. Beheshti, Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation, J. Math. Comput. Sci. ( TJMCS) , 6 (2013), 79-84
##[4]
K. Diethelm, The analysis of fractional differential equation, Springer-Verlag , Berlin (2010)
##[5]
G. J. Fix, J. P. Roop, Least squares finite element solution of a fractional order two-point boundary value problem, Comput. Math. Appl. , 48 (2004), 1017-1033
##[6]
M. M. Khader , On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul. , 16 (2011), 2535-2542
##[7]
F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Plank equation, J. Comput. Appl. Math. , 166 (2004), 209-219
##[8]
JT. Machado, V. Kiryakova, F. Mainardi, Rcent history of fractional caculus, Commun Nonlinear Sci. Numer. Simul. , 16 (2011), 1140-1153
##[9]
J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC press, Boca Raton (2003)
##[10]
M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. , 172 (2004), 65-77
##[11]
M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90
##[12]
M. M. Meerschaert, H. P. Scheffler, C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equations, J. Comput. Phys., 211 (2006), 249-261
##[13]
A. Neamaty, B. Agheli, R. Darzi, Solving fractional partial differential equation by using wavelet operational method, J. Math. Comput. Sci. ( TJMCS) , 7 (2013), 230-24
##[14]
Y. Rossikhin, M. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev. , 63 (2010), 1-52
##[15]
A. Saadatmandi, M. Dehghan, A tau approach for solution of the space fractional diffusion equation, Compute. Math. Appl. , 62 (2011), 1135-1142
##[16]
E. Sousa, Numerical approximations for fractional diffusion equation via splines, Compute. Math. Appl. , 62 (2011), 938-944
##[17]
N. H. Sweilam, M. M. Khader, A. M. Nagy, Numerical solution of twosided space-fractional wave equation using finite difference method , J. Comput. Appl. Math, 235 (2011), 2832-2841
##[18]
C. Tadjeran, M. M. Meerschaert, H. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. , 213 (2006), 205-213
##[19]
C. Tadjeran, M. M. Meerschaert, A second-order accurate numerical approximation for the two-dimensional fractional diffusion equation, J. Comput. Phys. , 220 (2007), 813-823
]
Adomian Decomposition Method for Solving Fractional Bratu-type Equations
Adomian Decomposition Method for Solving Fractional Bratu-type Equations
en
en
The Adomian decomposition method is proposed to solve fractional Bratu-type equations. The iteration procedure is based on a fractional Taylor series. Three examples are illustrated to show the presented method’s efficiency and convenience.
236
244
Bahman
Ghazanfari
Amaneh
Sepahvandzadeh
Fractional Bratu-type equation
Adomian decomposition method
Jumarie’s derivative.
Article.6.pdf
[
[1]
F. B. M. Duarte, J. A. Tenreiro Machado, Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators, Nonlinear Dyn., 29 (2002), 315-342
##[2]
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323-337
##[3]
N. Engheta , On fractional calculus and fractional multipoles in electromagnetism, IEEE T. Antenn. Propag, 44 (1996), 554-566
##[4]
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593
##[5]
V. V. Kulish, Jos L. Lage , Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 , doi:10.1115/1.1478062. (2002)
##[6]
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Soft., 41 (2010), 9-12
##[7]
V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225
##[8]
C. Lederman, J-M Roquejoffre, N. Wolanski, Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames, Ann. di Mate, 183 (2004), 173-239
##[9]
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, (1997), 291-348
##[10]
F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonl. Sci. Num. Sim., 15 (2010), 939-945
##[11]
H. Jafari, S. Seifi, Homotopy Analysis Method for solving linear and nonlinear fractional diffusion-wave equation, Commun. Nonli. Science Numer. Simul., 14 ( 5) (2009), 2006-2012
##[12]
V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using adomian decomposition, Appl. Math. Comput., 189 (2007), 541-548
##[13]
O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett., A 372 (2008), 451-459
##[14]
B. Ghazanfari, A. G. Ghazanfari, M. Fuladvand, Modification of the Homotopy Perturbation Method for Numerical Solution of Nonlinear Wave and System of Nonlinear Wave Equations, J. Math. Computer Sci. , 3 (2011), 212-224
##[15]
M. Mahmoudi, M. V. Kazemi, Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method, J. Math. Computer Sci. , 7 (2013), 138-143
##[16]
M. Rabbani, New Homotopy Perturbation Method to Solve Non-Linear Problems, J. Math. Computer Sci., 7 (2013), 272-275
##[17]
I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 674-684
##[18]
G. Wu, E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett., A 374 (2010), 2506-2509
##[19]
Z. Odibat, S. Momani, V. Suat Erturk, Generalized differential transform method: application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467-477
##[20]
Y. Zhang , A finite difference method for fractional partial differential equation , Appl. Math. Comput., 215 (2009), 524-529
##[21]
A. Neamaty, B. Agheli, R. Darzi , Solving Fractional Partial Differential Equation by Using Wavelet Operational Method, J. Math. Computer Sci., 7 (2013), 230-240
##[22]
H. Azizi, Gh. Barid Loghmani , A numerical method for space fractional diffusion equations using a semi-disrete scheme and Chebyshev collocation method, J. Math. Computer Sci. , 8 (2014), 226-235
##[23]
G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston (1994)
##[24]
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501-544
##[25]
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 51 (2006), 1367-1376
##[26]
Y. Chen, Y. Yan, K. W. Zhang, On the local fractional derivative, J. Math. Anal. Appl., 362 (2010), 17-33
]
J-type Mappings and Fixed Point Theorems in Menger Spaces
J-type Mappings and Fixed Point Theorems in Menger Spaces
en
en
J. Garcia-Falset, E. Llorens-Fuster and S. Prus in [2] studied the existence of fixed point of J-type mappings in Banach spaces. In this paper, we extend these mappings in Menger spaces and prove the fixed point theorems of these mappings in complete Menger spaces. In this paper, we also prove theorems for the new class of mappings which is called altering J-type.
245
250
E.
Feizi
Z.
Hosseini
Fixed point
Menger space
J-type mapping
Altering J-type mapping.
Article.7.pdf
[
[1]
Binayak S. Chaudhury, Krishnapada Das, A coincidence point result in Menger spaces using a control function, Solitons and fractals, 42 (2009), 3058-3063
##[2]
J. Garcia-Falset, E. Llorens-Fuster, S. Prus , The fixed point property for mappings admitting a center, Nonlinear Analysis, 66 (2007), 1257-1274
##[3]
Jin-Xuan Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces , Nonlinear Analysis, 71 (2009), 1833-1843
##[4]
Jin-Xuan Fang, Yang Gao, Common fixed point theorems under strict contractive conditions in menger spaces, Nonlinear Analysis, 70 (2009), 184-193
##[5]
K. Goebel, W. A. Kirk, Classical theory of non expansive mappings, Handbook of metric fixed point theoy, Kluwer. A. P. (2001)
##[6]
M. Imdad, Javad Ali, M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Solitons and fractals, 42 (2009), 3121-3129
##[7]
K. Menger , Statistical metrics, Proc. Nat. Acad. Sci. USA , 28 (1942), 535-537
##[8]
José R. Morales, E. M. Rojas, Altering distance functions and fixed point theorems through rational expression, Mathematic and Computer Science, (2012)
##[9]
Z. Mustafa, Mixed g-monotone property and quadruple fixed point theorems in partially ordered G-metric spaces using \((\phi , \psi)\) contractions, Mathematic and Computer Science, (2012), 1-22
##[10]
B. D. Pant, Sunny Chauhan, A fixed point theorem in Menger space, , 7 (2011), 9-17
##[11]
A. Razani, K. Fuladgar, Extension of contractive maps in the Menger probabilistic metric space, Solitons and fractals, 34 (2007), 1724-1731
##[12]
B . Schweizer, A. Sklar , Probabilistic metric space, Elsevier, New York (1983)
##[13]
B. Singh, S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appel, 301 (2005), 439-448
]
Using Shifted Legendre Polynomials for Solving Optimal Control Problem of an Hiv Infection Treatment Control Model
Using Shifted Legendre Polynomials for Solving Optimal Control Problem of an Hiv Infection Treatment Control Model
en
en
In this paper we introduce a numerical technique based on Legendre polynomials for solving of nonlinear optimal control problems, where this approach is used for solving optimal control problem of an HIV infection treatment control model. In this paper, first by using healthy cells \(CD4^+T (T)\), infected cells \(CD4^+T (I)\), viral load \((V)\) and also by using a drug inhibitor of reverse polygraph as a control function, a control model is presented for treatment of HIV infection. A cost function to minimize the cost of drug during the treatment is defined as well. To find the pair of trajectory and control of such nonlinear optimal control problem, we used shifted Legendre polynomials to approximate optimal pair of trajectory and control.
251
257
M.
Alizadehjamal
M. H.
Farahi
S. A.
Mahdipour
Legendre polynomials
HIV infection
Optimal control.
Article.8.pdf
[
[1]
B. A. Ardekani, A. Keyhani, Identification of non-linear systems using the exponential Fourier series, Int. J. Control, 50 (1989), 1553-1558
##[2]
S. Dong-Her, K. Fan-Chu, Analysis and parameter estimation of a scaled system via shifted Legender polynomials, International Journal of systems Science, 17 (1986), 401-408
##[3]
W. L. Chen, Y. P. Shih, Parameter estimation of bilinear systems via Walsh functions, Journal of the Franklin Institute, 305 (1978), 249-257
##[4]
M. Gulsu, M. Sezer, A Taylor polynomial approach for solving differential-difference equations, Journal of Computational and Applied Mathematics, 186 (2006), 349-364
##[5]
H. Jaddu, E. Shimomura, Solution of nonlinear optimal control problem using Chebyshev polynomials, Proceeding of 2nd Asian Control Conference, (1997), 417-420
##[6]
K. Maleknejad, M. Shahrezaee, H. Khatami, Numerical solution of integral equations system of the second kind by block-pulse functions, Applied Mathematics and Computation, 166 (2005), 15-24
##[7]
M. Razzaghi, S. Yousefi, Legender wavelets method for the solution of nonlinear problems in the calculus of variations, Mathematical and Computer Modelling, 34 (2001), 45-54
##[8]
M. Shirazian, M. H. Farahi, Optimal control strategy for a fully determined HIV model, Intelligent control and automation, (2010), 15-19
##[9]
S. P. Banks, Mathematical theories of nonlinear systems, Prentice Hall, Hertfordshire (1988)
]
Conditional P-maxian Problem on Network
Conditional P-maxian Problem on Network
en
en
This article investigates the problem of conditional p-maxian on the networks. Assume a network like \(G = (V,E)\) that the weight in each of its vertices \(v_i\) is positive \(w_i\) . In a p-maxian problem, the goal is to find a set contains p as the vertice of the set and as a facility; in a way that the sum of maximum of weighted distance of other point is the highest one from the set.
In the problem of conditional p-maxian, we assume that some facilities are already existed and there is need to add other p ones.
In this article, other new algorithms are presented to solve the problem of conditional p-maxian and their results (e.g. their solution time in finding the optimum points) are compared. One of the applications of this article is to determine an optimum place for landfill wastes. The wastes must be in the farthest distance of the demand (areas that people live) and it must be in the appropriate places to serve the requests.
258
264
Somayeh
Ziyanloo
Jafar
Fathali
p-maxian
Conditional
Location
Network.
Article.9.pdf
[
[1]
O. Berman, Z. Drezner, A new formulation for the conditional p-median and p-center problems, Operations Research Letters , 36 (2008), 481-483
##[2]
O. Berman, D. Simchi-Levi , The conditional location problem on networks , Transportation Science, 24 (1994), 77-78
##[3]
R. E. Burkard, J. Fathali, H. Taghizadehkakhki, The p-median problem on a tree, In Proceedings of Oper. Res. Lett., (2007), 331-335
]
Drafs a Routing Algorithm Based on Distributed Food Sources Using Ant Colony Optimization
Drafs a Routing Algorithm Based on Distributed Food Sources Using Ant Colony Optimization
en
en
Distribution in routing algorithms based on food sources is a critical issue and the desired result could not be achieved through the old algorithms. For this purpose, participation of all sources through balanced distribution has been made in this proposed algorithm. In this paper, an improved routing algorithm based on distributed food sources is presented using the ant colony optimization. DRAFS algorithm helps us find the shortest path in order that we can generate a competence function, with the help of index parameters, to provide an optimal solution compared with other algorithms. Observing the distance and time parameters in finding the optimal solution, we introduce a target function which is accompanied by an increase in the algorithm efficiency. Comparing DRAFS algorithm with the previous routing algorithms, we have enjoyed the ants’ collaboration mechanism that results in the ants with high efficiency guiding the ants with low efficiency. Consequently, an optimal quality is achieved in the algorithm compared with the existing solutions. Finally, these two techniques help us improve the efficiency and reliability of the algorithm and, in comparison with previous algorithms, provide a distributed food source to reduce time accessibility to the source in large datasets.
265
281
Arash Ghorbannia
Delavar
Emetis
Niazmand
Javad
Bayrampoor
Vahe
Aghazarian
Ant colony optimization
Distributed food sources
Ants’ collaboration.
Article.10.pdf
[
[1]
C. J. Liao, Y. L. Tsai, C. W. Chao, An ant colony optimization algorithm for setup coordination in a two-stage production system, Applied Soft Computing, 11 (2011), 4521-4529
##[2]
V. A. Gromov, A. N. Shulga, Chaotic time series prediction with employment of ant colony optimization, Expert Systems with Applications, 39 (2012), 8474-8478
##[3]
Z. Zhang, Z. Feng , Two-stage updating pheromone for invariant ant colony optimization algorithm, Expert Systems with Applications, 39 (2012), 706-712
##[4]
S. Ilie, C. Bădică, Multi-agent approach to distributed ant colony optimization, Science of Computer Programming, 78 (2013), 762-774
##[5]
S. Ilie, A. Bădică, C. Bădică, Distributed agent-based ant colony optimization for solving traveling salesman problem on a partitioned map, in: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, WIMS ’11, ACM, 23 (2011), 1-23
##[6]
G. Reinelt, Tsplib — a traveling salesman library, ORSA Journal on Computing, 3 (1991), 376-384
##[7]
A. Ghorbannia Delavar, V. Aghazarian, S. Sadighi, ERPSD: A New Model for Developing Distributed, Secure, and Dependable Organizational Software , CSIT (2009)
##[8]
A. Puris, R. Bello, F. Herrera, Analysis of the efficacy of a Two-Stage methodology for ant colony optimization: Case of study with TSP and QAP Expert Systems with Applications, , 37 (2010), 5443-5453
##[9]
R. J. Mullen, D. Monekosso, S. Barman, P. Remagnino, A review of ant algorithms, Expert Systems with Applications, 36 (2009), 9608-9617
##[10]
A. Puris, R. Bello, Y. Martinez, A. Nowe, Two-stage ant colony optimization for solving the traveling salesman problem, In Nature inspired problem-solving methods in knowledge engineering, Second international work conference on the interplay between natural and artificial computation, La Manga del Mar Menor, Spain, IWINAC , (2007), 307-316
##[11]
M. Birattari, P. Pellegrini, M. Dorigo , On the invariance of ant colony optimization, IEEE Transactions on Evolutionary Computation, 11 (2007), 732-742
##[12]
M. Dorigo, C. Blum, Ant colony optimization theory: A survey, Theoretical Computer Science, 344 (2005), 243-278
##[13]
Y. Bai, W. Zhang, Z. Jin, An new self-organizing maps strategy for solving the traveling salesman problem, Chaos, Solitons and Fractals, 28 (2006), 1082-1089
##[14]
S. Depickere, D. Fresneau, J. Deneubourg, Effect of social and environmental factors on ant aggregation: A general response?, Journal of Insect Physiology, 54 (2008), 1349-1355
##[15]
S. Ilie, C. Bădică , Distributed multi-agent system for solving traveling salesman problem using ant colony optimization, in: M. Essaaidi, M. Malgeri, C. Bădică (Eds.), Intelligent Distributed Computing IV, in: Studies in Computational Intelligence, Springer, Berlin/Heidelberg, 315 (2010), 119-129
##[16]
S. Ilie, C. Bădică , Effectiveness of solving traveling salesman problem using ant colony optimization on distributed multi-agent middleware, in: Proceedings of the International Multi conference on Computer Science and Information Technology, (2010), 197-203
##[17]
M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony optimization, Applied Soft Computing, 11 (2011), 5181-5197
##[18]
R. Laura, B. Matteo, R. Gianluca, On ant routing algorithms in ad hoc networks with critical connectivity, Ad Hoc Networks (Elsevier), 6 (2008), 827-859
##[19]
S. Misra, S. K. Dhurandher, M. S. Obaidat, K. Verma, P. Gupta, A low-overhead fault-tolerant routing algorithm for mobile ad hoc networks: A scheme and its simulation analysis, Simulation Modelling Practice and Theory, 18 (2010), 637-649
##[20]
A. Ghorbannia Delavar, S. Hoseyny, R. Maghsoudi, BCO-Based Optimized Heuristic Strategies for QoS Routing, The Journal of Mathematics and Computer Science, 5 (2012), 105-114
]
A Method for Reducing Repetitive Items on Weighted Data Using the Wit-wfi Algorithm
A Method for Reducing Repetitive Items on Weighted Data Using the Wit-wfi Algorithm
en
en
Trying and mining frequent item sets plays an important role in the mining of association rules .in a dataset that stored with items and transactions an items can used for various significance .association rules is a important and considerable ways in data mining without presidency . one of discussion that today investigate is mining and finding frequent weighted item set and reduce run time of algorithm and reduce production frequent item sets is one of problem for research .at this paper we purpose present some method and ways for reduce run time of algorithm and reduce production frequent item set .all methods and ways applying on WIT algorithm and WIT-Tree structure .in first section we express and description classic association rule method (Apriori) and then WIT and then WIT-Diff algorithm and finally explain my proposed ways and experimental results.
282
296
Akbar
Rashidi
Arash Ghorbannia
Delavar
Data mining
Frequent items
Weighted item sets
WIT-Tree
Association rules.
Article.11.pdf
[
[1]
B. Frans Coenen, Le. Bac , A new method for mining Frequent Weighted , , VLDB94 (2013), 489-499
##[2]
R. Agrawal, R. Srikant , Fast algorithms for mining association rules, , VLDB’94 (1994), 487-499
##[3]
C. H. Cai, A. W. Fu, C. H. Cheng, W. W. Kwong, Mining association rules, international database engineering , (1998), 68-77
##[4]
T. P. Hong, Y. Y. Wu, S. L. Wang, An effective mining approach for up-todate, Expert Systems with Applications, (2009), 9747-9752
##[5]
T. P. Hong, C. J. Wang, An efficient and effective association-rule, Expert Systems with, (2010), 618-626
##[6]
M. S. Khan, M. Muyeba, F. Coenen , A weighted utility framework, second uksim european symposium on, (2008), 87-92
##[7]
B. Le, H. Nguyen, T. A. Cao, B. Vo , A novel algorithm for mining high utility, Asian conference on intelligent information and database, (2009), 13-16
##[8]
B. Le, H. Nguyen, B. Vo, An efficient strategy for mining high utility, International Journal of Intelligent Information and Database Systems, (2011), 164-176
##[9]
, , http://fimi.cs.helsinki.fi/data/. Dataset. , ()
##[10]
B. Vo, T. P. Hong, B. Le, A dynamic bit-vector approach, Expert Systems with Applications, (2012), 7196-7206
##[11]
B. Vo, B. L e, Interestingness measures for association rules, Expert Systems with Applications, (2011), 11630-11640
##[12]
B. Vo, B. L e, Mining minimal non-redundant association rules, Journal of Intelligent Systems Technology and Applications, (2011), 92-106
##[13]
C. H. Cai, A. W. Fu, C. H. Cheng, Mining association rules with weighted items, international database engineering , (1998), 68-77
##[14]
B. Vo, Frans Coenen, Le. Bac , A new methid for mining frequent weighted itemsets based on wit-trees, , (2013)
##[15]
M. J. Zaki, Mining non-redundant association rules, Data Mining and Knowledge Discovery, 223–248 (2004)
##[16]
Tao. F. Murtagh, Weighted association rule mining using weighted support and significance framework, Proceeding, 661-666 (2003)
##[17]
Russel Pears, Yun Sing Koh, Gillian Dobbie, Wai Yeap, Weighted association rule mining via a graph based connectivity model, Information Sciences, (2012)
##[18]
Rouhollah Maghsoudi, Somayye Hoseini , Surveying Robot Routing Algorithms with Data Mining Approach, The Journal of Mathematics and Computer Science, Vol .2. (2011)
##[19]
Fatemeh Zabihi, Mojtaba Ramezan, Mir Mohsen Pedram, Azizollah Memariani, Rule Extraction for Blood Donators with Fuzzy Sequential Pattern Mining, The Journal of Mathematics and Computer Science, Vol. 2. (2011)
]
Bayesian Estimation of Generalized Auto Regressive Conditionally Heteroscedastic Model with an Application to Foolad Mobarakeh Stock Returns
Bayesian Estimation of Generalized Auto Regressive Conditionally Heteroscedastic Model with an Application to Foolad Mobarakeh Stock Returns
en
en
Problems in economics and finance have recently motivated the study of the volatility of a time series data setting. Several time series models to concern the volatility of such data have been considered. Although the Auto Regressive Moving Average (ARMA) models assume a constant variance, models such as the Auto Regressive Conditionally Heteroscedastic (ARCH) models are developed to the model changes in volatility. In this paper, we indicate that the generalized ARCH (GARCH) models which have been proposed are useful in many economics and financial studies. We thus develop both probabilistic properties and the Bayesian estimation method of a GARCH (1, 1) model. We then illustrate the model on Foolad Mobarakeh (F.M) daily returns from 2007 to 2012. Further we forecast future values of conditional variance of returns.
297
306
Hoda
Nazari
Manoochehr
Babanezhad
Majid
Azimmohseni
ARCH
GARCH
Heteroscedastic
Volatility
Metropolis-Hasting algorithm.
Article.12.pdf
[
[1]
V. Akgiray, Conditional heteroskedasticity in time series of stock returns: evidence and forecasts, Journal of Business, 62 (1989), 55-80
##[2]
T. G. Andersen, T. Bollerslev, P. F. Christoffersen, F. X. Diebold, Volatility and Correlation Forecasting, in G. Elliot, C.W.J. Granger, and A. Timmermann, Handbook of Economic Forecasting, Amsterdam, North-Holland, (2006), 778-878
##[3]
M. Babanezhad, Trend Analysis with Effective Covariates Based On Auto Regressive Moving Average Time Series Residuals, journal of mathematics and computer science, 7 (2013), 121-130
##[4]
T. Bollerslev, Generalized Autoregressive Conditional Heteroskedasticity, journal of Econometrics, 31 (1986), 307-327
##[5]
P. J. Deschamps , A Flexible Prior Distribution for Markov Switching Autoregressions with Student-t Errors, Journal of Econometrics, 133(1) (2006), 153-190
##[6]
R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, journal of Econometrica, 50 (1982), 987-1007
##[7]
J. Fan, Q. Yao, Nonlinear time series: nonparametric and parametric methods, Springer, New York (2003)
##[8]
A. Ghalanos, rgarch: Flexible GARCH modelling in R, URL http://r-forge.r-project.org/projects/rgarch. , (2010)
##[9]
L. Giraitis, P. Kokoszka, R. Leipus, Stationary ARCH models: dependence structure and central limit theorem, Economet. Theory , 16 (2000), 3-22
##[10]
T. Nakatsuma, A markov-chain sampling algorithm for GARCH models, Studies in Nonlinear Dynamics and Econometrics, 3(2) (1998), 107-117
##[11]
S.-H. Poon, C. Granger, Forecasting Volatility in Financial Markets: A Review, Journal of Economic Literature, 41(2) (2003), 478-539
##[12]
S.-H. Poon, C. Granger, Practical Issues in Forecasting Volatility, Financial Analysts Journal, 61(1) (2005), 45-56
##[13]
R. H. Shumway, D. S. Stoffer, Time Series Analysis and Its Applications: With R Examples, Springer, (2010)
##[14]
A. Silvennoinen, T. Teräsvirta, Multivariate GARCH, In T.G. Andersen, R.A. Davis, J-P Kreiss and T. Mikosch, editors, Handbook of Financial Time Series, Springer, New York (2008)
##[15]
A. Trapletti, K. Hornik, tseries: Time series analysis and computational finance, URL http: //CRAN.R-project.org/package=tseries. , (2009)
##[16]
T. Teräsvirta, An Introduction to Univariate GARCH Models, In T.G. Andersen, R.A. Davis, J-P Kreiss, and T. Mikosch, editors, Handbook of Finananccial Time Series, New York, Springer, (2008), 17-42
##[17]
D. Wuertz, Y. Chalabi, fGarch: Rmetrics-Autoregressive Conditional Heteroskedastic Modelling, URL http://CRAN.R-project.org/package=fGarch., (2009)
]
Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Functions
Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Functions
en
en
An ideal I is a family of subsets of positive integers N which is closed under taking finite unions and subsets of its elements. In this article we introduce ideal convergent sequence spaces using Zweier transform and Orlicz function. We study some topological and algebraic properties. Further we prove some inclusion relations related to these new spaces.
307
318
B.
Hazarika
K.
Tamang
B. K.
Singh
Ideal
I-convergence
Zweier sequence
Orlicz function.
Article.13.pdf
[
[1]
V. K. Bhardwaj, N. Singh, Some sequence space defined by orlicz functions, Demonstration Math., 33(3) (2000), 571-582
##[2]
H. Cakalli, B. Hazarika, Ideal quasi-Cauchy sequences, Journal of Inequalities and Applications, DOI:10.1186/1029-242X-2012-234. , 2012 (2012), 1-11
##[3]
K. Dems, On I-Cauchy sequences, Real Anal. Exchange, 30(1) (2004), 123-128
##[4]
M. Et, On Some new Orlicz sequence spaces, J. Analysis, 9 (2001), 21-28
##[5]
A. Esi , Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica. , 27 (1999), 71-76
##[6]
A. Esi, M. Et, Some new sequence spaces defined by a sequence of Orlicz functions, Indian J. Pure Appl. Math., 31(8) (2000), 967-972
##[7]
A. Esi, B. Hazarika, \(\lambda\)-ideal convergence in intuitionistic fuzzy 2-normed linear spaces, Journal of Intelligent and Fuzzy Systems , DOI: 10.3233/IFS-2012-0592. ()
##[8]
B. Hazarika, E. Savas, Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Math. Comp. Model., 54 (2011), 2986-2998
##[9]
B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces , Filomat, 26(6) (2012), 1273-1282
##[10]
B. Hazarika, V. Kumar, Bernardo Lafuerza-Guillen, Generalized ideal convergence in intuitionistic fuzzy normed linear spaces, Filomat , 27(5) (2013), 811-820
##[11]
B. Hazarika, Lacunary I-convergent sequence of fuzzy real numbers, The Pacific Jour. Sci. Techno. , 10(2) (2009), 203-206
##[12]
B. Hazarika, Fuzzy real valued lacunary I-convergent sequences, Applied Math. Letters, 25(3) (2012), 466-470
##[13]
B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 157-166 (2013)
##[14]
P. K. Khamthan, M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York (1980)
##[15]
M. A. Korasnoselkii, Y. B. Rutitsky , Convex function and Orlicz functions, Groningoen, Netherlands (1961)
##[16]
P. Kostyrko, T. Salat, W. Wilczynski , I-convergence, Real Analysis Exchange, 26(2) (2000), 669-686
##[17]
B. K. Lahiri, P. Das, I and I*-convergence in topological spaces, Math. Bohemica, 130 (2005), 153-160
##[18]
J. Lindenstrauss, L. Tzafriri , On Orlicz sequence spaces, Israel J. Pure Math. , 101 (1971), 379-390
##[19]
I. J. Maddox, Elements of Functional Analysis, Cambridge Univ , Press (1970 )
##[20]
E. Malkowsky , Recent results in the theory of matrix transformation in sequence spaces, Math. Vesnik. , 49 (1997), 187-196
##[21]
M. Mursaleen, S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca , 62(1) (2012), 49-62
##[22]
H. Nakano , Concave modulars, J. Math. Soc. Japan, 5 (1953), 29-49
##[23]
S. D. Parashar, B. Chaudhary , Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math., 25 (1994), 419-428
##[24]
W. H. Ruckle, FK spaces in which the sequence of coordinate vector is bounded , Canad. J. Math. , 25 (1973), 973-978
##[25]
T. Salat, B. C. Tripathy, M. Ziman , On some properties of I- convergence, Tatra Mt. Math. Publ. , 28 (2004), 279-286
##[26]
T. Salat, B. C. Tripathy, M. Ziman, On I-convergence field, Italian J. Pure and Appl. Math. , 17 (2005), 45-54
##[27]
M. Sengonul , On The Zweier Sequence Space, Demonstratio Math., Vol.XL No.(1) (2007), 181-196
##[28]
B. C. Tripathy, Y. Altin, M. Et, Generalized difference sequences space on seminormed spaces defined by Orlicz functions, Mathematica Slovaca , 58(3) (2008), 315-324
##[29]
B. C. Tripathy, B. Hazarika , Some I-convergent sequence space defined by Orlicz functions, Acta Mathematicae Applicatae Sinica, English Series., 27 (2011), 149-154
##[30]
B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces , Math. Slovaca, 59(4) (2009), 485-494
##[31]
B. C. Tripathy, B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J., 51 (2011), 233-239
##[32]
B. C. Tripathy, B. Hazarika, I-convergent sequence spaces associated with multiplier sequences, Math. Ineq. Appl. , 11(3) (2008), 543-548
##[33]
B. C. Tripathy, B. Hazarika, B. Choudhary , Lacunary I-convergent sequences , Kyungpook Math. J., 52(4) (2012), 473-482
]
Sigma Ideal Amenability of Banach Algebras
Sigma Ideal Amenability of Banach Algebras
en
en
Let \(A\) be a Banach algebra and let \(I\) be a closed two-sided ideal in \(A\). \(A\) is \(I\)-weakly amenable if \(H^1(A,I^*) = \{0\}\). Further, \(A\) is ideally amenable if \(A\) is \(I\)-weakly amenable for every closed two-sided ideal \(I\) in \(A\). In this paper we introduce \(\sigma\)-ideal amenability for a Banach algebra \(A\), where \(\sigma\) is an idempotent bounded endomorphism of \(A\).
319
325
M.
Momeni
T.
Yazdanpanah
M. R.
Mardanbeigi
\(\sigma\)-ideally amenable
\(\sigma\)-weakly amenable
closed two-sided ideal
\(\sigma\)-derivation.
Article.14.pdf
[
[1]
M. Eshaghi Gordji, T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci. , 114, 4 (2004), 399-408
##[2]
M. Momeni, T. Yazdanpanah, M. R. Mardanbeigi, \(\sigma\)–Approximately Contractible Banach Algebras, Abstract and Applied Analysis, Article ID 653140, , doi: .1155/2012/653140. , 2012 (2012), 1-20
##[3]
H. G. Dales, F. Ghahramani, N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. , 128 (1998), 19-54
##[4]
HE. Dales, Banach algebra and automatic continuity, London Mathematical Society Monographs (Oxford: Clarendon Press) , vol. 24 (2000)
]