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Abstract
We study an initial value problem with fractional Laplacian and a singular integral drift term. This equation quantifies

fractal interfaces in statistical mechanics. The singularity of the drift term is a generalization of existing results. Making use of
some important boundedness properties of Calderón-Zygmund operator in Lp and Lipschitz spaces, we obtain local and global
existence theorems.

Keywords: Singular integration, nonlocal equations.

2020 MSC: 35Q82, 35C15.
c©2022 All rights reserved.

1. Introduction

Consider the following initial value problem,{
∂tu(t, x) = −(−∆)α/2u−∇ · (uB(u)),
u(0, x) = u0(x),

(1.1)

where u : R+ ×Rd → R for positive integer d and α ∈ (1, 2). The operator −(−∆)α/2 is the fractional
power of the Laplacian ∆, analytically, it can be defined as,

−(−∆)α/2v(x) = F−1(|ξ|αF(v)(ξ))(x),

for any Schwartz function v ∈ S, with F denoting the Fourier operator. Probabilistically, it can be also
viewed as a Markov jump process operator, thus, has the following equivalent form,

−(−∆)α/2v(x) = K

∫
Rd

(v(x+ y) − v(x) −∇v(x) · y1|y|61)
dy

|y|d+α
,

where K = Kα,d is a constant. B(u) is a singular integral operator defined by,

B(u)(x) =

∫
Rd
b(x,y)u(y)dy,
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with a Calderón-Zygmund singular integral kernel b(x,y). Recall the conditions that a Calderón-Zygmund
kernel has to satisfy: there are constants C and δ > 0, such that for any x,y ∈ Rd,

|b(x,y)| 6
C

|x− y|d
,

|b(x,y) − b(x ′,y)| 6
C|x− x ′|

(|x− y|+ |x ′ − y|)δ
, whenever |x− x ′| 6

1
2

max(|x− y|, |x ′ − y|),

|b(x,y ′) − b(x,y)| 6
C|y− y ′|

(|x− y|+ |x ′ − y|)δ
, whenever |y− y ′| 6

1
2

max(|x− y|, |x ′ − y|).

For more detailed analysis on integration with respect to Calderón-Zygmund kernel, see, e.g., [8–11]. We
also denote the singular integral operator as Kb, hence, write B(u)(x) = Kbu(x).

Equation (1.1), in various forms, has been studied in both mathematical and physics literature. In [6],
one form of this equation characterizes fractal interfaces in statistical mechanics in the presence of self-
similar hopping surface diffusion, and generalizes the classical Kardar-Parisi-Zhang (KPZ) model. Reg-
ularity and conservation laws for (1.1) with different drift B(u), are considered in [1, 2, 5]. When B(u)
is a more regular operator, where b(x,y) is a convolutional kernel satisfy necessary bound on value and
derivative such that the integral operator is (p,∞) ((p,q) refers to bounded operator from Lp to Lq) for
some p > d/β, the local and global existences of (1.1) are obtained in [5]. In this paper, we deal with the
case where B(u) is represented by a general Calderón-Zygmund operator. The integration is singular, the
boundedness of the operator is weaker. Our results consists of identifying the function spaces in which
local and global existences results of (1.1) can be derived.

In Sec. 2, we will provide necessary background material and notations; in Sec. 3, we will present the
local existence results; and the global existence results will be presented in Sec. 4.

2. Notation and basic formulas

2.1. Function spaces and norms

For 0 < p <∞, the Calderón-Zygmund operator Kb is known to be (p,p), i.e., bounded operator maps
Lp functions to Lp functions. More precisely, there exists a constant Ap, such that ‖Kbf‖p 6 Ap‖f‖p for
any function f ∈ Lp(Rd) with the Lp norm ‖ · ‖p defined as ‖f‖p := (

∫
Rd

|f(x)|pdx)1/r, and the space
Lp(Rd) includes all the measurable functions that has finite Lp norm. In addition, the operator Kb is
bounded on Lipschitz space Lip(ε) for any ε 6 δ with δ being the parameter in the Calderón-Zygmund
kernel K1 = 0 by the main theorem (Theorem 1.6) in [11]. Recall that Lip(α) refers the space of functions
that satisfy |f(x) − f(y)| 6 Cd(x,y)α.

The function space in which we will derive the local existence theorem is defined to be LpxL∞t (Rd ×
[0, t]) the space of all functions whose LpxL∞t norm is finite, with

||f(x, t)‖LpxL∞t := sup
06s6t

(∫
x∈Rd

|f(x, s)|pdx
)1/p

.

2.2. Weak solution

For any test function ψ(x, s) in C∞0 (Rd ×R+), a function ut(x) in a suitable function space is a weak
solution if the following is satisfied,∫

Rd
ψ(x, t)ut(x)dx−

∫
Rd
ψ(x, 0)u0(x)dx

=

∫t
0

∫
Rd

[
∂

∂s
ψ(x, s) − (−∆)α/2ψ(s, x) +B(us)(x).∇ψ(x, s)

]
us(x)dxds.

(2.1)
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2.3. Semigroup and generator
The generator for semi-group exp(−t(−∆)α/2) is denoted as pαt . For any smooth function φ, then

Ψ(s, x) = pαt−s ?φ(x) satisfies

∂

∂s
Ψ(s, x) − (−∆)α/2Ψ(σ, x) = 0.

It is known that, see, e.g., [5].

Lemma 2.1. If m > q > 1, and f ∈ Lq, then,

‖pαt ? f‖m 6 Ct−
d
α(

1
q−

1
m)‖f‖q, ‖∇pαt ? f‖m 6 Ct−

d
α(

1
q−

1
m)−

1
α ‖f‖q. (2.2)

3. Local existence

The following version of the Banach fixed point theorem, can be found in e.g., [3].

Lemma 3.1. Suppose that B : X×X→ X is a bilinear mapping for a Banach space (X, ‖ · ‖X), and it satisfies,

||B(x1, x2)||X 6 η||x1||X||x2||X,

for some η > 0. Then, for each y ∈ X satisfying 4η||y|| < 1, equation,

x = y+B(x, x)

admits a unique solution x in the ball {z ∈ X, ||z|| 6 R} with R =
1−
√

1−4η||y||
2η . Moreover, the solution satisfies

inequality ||x||X 6 2||y||X.

Previous results assume that the kernel |b(x,y)| 6 C|x|β−d for some β > 0. This will lead to ||B(u)||∞ .
||u||. In order to apply the fixed point theorem in Lemma 3.1, define the following bilinear map,

B(u, v)(t, x) =
∫t

0
∇pαt−s ? (B(vs)us)ds. (3.1)

Lemma 3.2. For any p > 2, there exists a constant C > 0, such that,∥∥∥∥∫t
0
∇pαt−s ? (B(vs)us)ds

∥∥∥∥
L
p
xL
∞
T

6 CT 1− 1
α ‖v‖LpxL∞T ‖u‖LpxL∞T .

Proof. ∥∥∥∥∫t
0
∇pαt−s ? (B(vs)us)ds

∥∥∥∥
L
p
xL
∞
T

(a)

6
∫T

0

∥∥∇pαt−s ? (B(vs)us)∥∥Lpx ds
(b)

6 C
∫T

0
(t− s)−

d
α(

1
p)−

1
α ‖(B(vs)us)‖

L
p
2
x

ds

(c)

6C
∫T

0
(t− s)−

d
α(

1
p)−

1
α ‖(B(vs)‖Lpx ‖us‖Lpx ds

(d)

6 C ′
∫T

0
(t− s)−

d
α(

1
p)−

1
α ‖vs‖Lpx ‖us‖Lpx ds

(e)

6C ′T 1− 1
α ‖v‖LpxL∞T ‖u‖LpxL∞T ,

where (a) is due to the nonnegativity of the integrand on the right hand side; (b) comes from the property
(2.2) in Lemma 2.1 for the operator pαt with m = p,q = p

2 ; (c) is an application of the Hölder’s inequality
applied to ‖(B(vs)us)‖

L
p
2
x

; (d) follows from the boundedness of the Calderón-Zygmund operator, more

specifically, ‖(B(vs)‖Lpx 6 C ′ ‖vs‖Lpx ; and (e) is the result of a simple integration calculation.
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Then, applying the fixed point theorem of Lemma 3.1, the following local existence theorem can be
established.

Theorem 3.3. For any p > 2, and u0 ∈ Lpx , there exist a a constant T∗ > 0 and function u(x, t) ∈ LpxL∞T∗ such
that u(x, t) is a weak solution, in the sense of (2.1), to (1.1).

Proof. Lemma 3.2 indicates that the bilinear form defined in (3.1) satisfies the condition for the fixed point
theorem, Lemma 3.1. Hence, we can conclude that, for any function u0 ∈ LpxL∞T∗ , there exist a constant
T∗ > 0 and a weak solution u(x, t) ∈ LpxL∞T∗ in the sense that is defined in (2.1).

4. Global existence

The goal of this section is to establish the global existence of (1.1) via a combined probabilistic and
analytic argument. Precisely, global existence means that for any given time horizon T <∞, the solution
u(t, x) solves the equation in a weak sense. The basic approach is a probabilistic one, we will construct a
solution to a stochastic differential equation, (4.1), that will be defined below. It has been demonstrated,
see, e.g., [5] that the density function of this solution solves (1.1). The solution of (4.1) will be constructed
through an iterative procedure, with key steps obtained utilizing the properties of the Calderón-Zygmund
operator.

We start with the following lemma on the existence and uniqueness of a class of stochastic differential
equations defined by a stable process.

Lemma 4.1. Given initial condition X0, α-stable process St, and a bounded function at : R → Rd, and at is
Lipschitz for any t ∈ [0, T ], the following stochastic differential equation,

Xt = X0 + St +

∫t
0
as(Xs)ds,

has a unique (pathwise and in law) solution in the Skorohod space D([0, T ], Rd).

Proof. When as is constant over time, this lemma is stated and proved in [5]. Similarly, here, the pathwise
existence and uniqueness are the result of a fixed point argument. Then the Yamada-Watanabe Theorem,
see, e.g., [4] ensures the uniqueness in probability law.

Note that we are studying the probability measure of the paths, so let us first introduce the Skorohod
space D([0, T ], Rd), the set of cádlád functions (functions that are right-continuous and have left limits
everywhere) from [0, T ] to Rd. Let PT denote the set of all probability measures on D([0, T ], Rd) that are
absolutely continuous with respect to the Lebesgue measure, and

P̃T =

{
P ∈ PT ,P0 =

|u0|

||u0||1

}
,

i.e., the subset of PT with the initial condition fixed. Define the following metric on P̃T , for any p > 0,

dT ,p(m1,m2) = max{ρp,T (m1,m2), ||f1 − f2||p},

where ρp,T denotes the p-Wasserstein distance on P̃T , i.e.,

ρp,T (P,Q) =

{
inf
∫
DT×DT

[
sup
t6T

|x(t) − y(t)| ∧ 1

]p
R(dx,dy)

} 1
p

,

with the infimum is taken over measures R with marginals P and Q, and R(x(0) = y(0)) = 1. And fi
denotes the density function of mi for i = 1, 2. It is worth noting that the metric space (PT ,dT ,p) is
complete. The stochastic stochastic differential equation is the following one,

Xt = X0 + St +

∫t
0

∫
Rd
b(Xs,y)P̃t(dy)ds, (4.1)

with P̃t(dy) denotes the probability law of Xt.
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4.1. An operator defined on the space of probability measures
Define an operator ΨY on P̃T , indexed by a process Y(t) as follows. For each m ∈ P̃T , denote mYt as

the Yt-weighted version of m, more specifically,

mYt (A) = ‖u0‖1E[1A(Yt)sgn(u0(Y0))].

Thus, ΨYt (m) is the probability measure induced by the solution to the following stochastic differential
equation,

Xt = X0 + St +

∫t
0

∫
Rd
b(Xs,y)mYt (dy)ds.

The following result is the key estimation for the global existence.

Lemma 4.2. With the condition that δ > 1 and Kb1 = 0, we can conclude that, There exists a constant C > 0,
such that, for any m1,m2 ∈ P̂T , dt,p(ΨYt (m1),ΨYt (m

2)) 6 C
∫t

0 ds,p(m
1,m2)ds.

Proof. First of all, we know that, for p > 1,

ρp,t(Ψ
Y
t (m

1),ΨYt (m
2)) 6

(
E

[
sup
s6t

|X1
s −X

2
s|
p

]) 1
p

.

Similarly, from relation between density and the process, see, e.g., [7], we can conclude that,

‖f1 − f2‖p 6

(
E

[
sup
s6t

|X1
s −X

2
s|
p

]) 1
p

.

Hence, we have,

dp,t(Ψ
Y
t (m

1),ΨYt (m
2)) 6

(
E

[
sup
s6t

|X1
s −X

2
s|
p

]) 1
p

6

(
E
[∫t

0

∣∣∣ ∫
Rd
b(X1

s,y)m
1(dy) − b(X2

s,y)m
2(dy)

∣∣∣p]) 1
p

.

By triangular inequality, it suffices to establish the following two inequalities,(
EΠ
∣∣∣ ∫t

0

∫
Rd
b(X1

s,y)m
1
t(dy)ds−

∫t
0

∫
Rd
b(X2

s,y)m
1
t(dy)ds

∣∣∣p)1/p

6 C
∫t

0
ds,p(m

1,m2)ds, (4.2)

and (
EΠ
∣∣∣ ∫t

0

∫
Rd
b(X2

s,y)m
1
t(dy)ds−

∫t
0

∫
Rd
b(X2

s,y)m
2
t(dy)ds

∣∣∣p)1/p

6 C
∫t

0
ds,p(m

1,m2)ds. (4.3)

The inequality (4.2) follows from the Lipschitz property of the Calderón-Zygmund operator (Theorem 1.6
in [11]). The inequality (4.3) holds because of the boundedness of the Calderón-Zygmund operator. More
specifically, (

EΠ
∣∣∣ ∫t

0

∫
Rd
b(X2

s,y)m
1
t(dy)ds−

∫t
0

∫
Rd
b(X2

s,y)m
2
t(dy)ds

∣∣∣p)1/p

6

(
EΠ

∫t
0

∣∣∣ ∫
Rd
b(X2

s,y)f
1 − f2dy

∣∣∣pds)1/p

6
∫t

0

(
EΠ
∣∣∣ ∫

Rd
b(X2

s,y)f
1 − f2dy

∣∣∣p)1/p

ds 6 C
∫t

0
ds,p(m

1,m2)ds.

4.2. Global existence
Theorem 4.3. Under the following conditions, we will have the global existence of the solution to equation (1.1):

i. the Calderón-Zygmund operator with δ > 1, and Kb1 = 0;
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ii. the initial condition u0 is a Lipschitz function, in other word, u0 ∈ Lip(1).

Proof. Start with an arbitrary stochastic process Y0
t ∈ D([0, T ], Rd), for any n > 1, define, Ynt := ΨY

n−1
t .

Then, iterating the inequality in Lemma 4.2, we get,

dT ,p(Ψ
n
T (m

1),ΨnT (m
2)) 6

Cn

n!
dT ,p(Ψ

0
T (m

1),Ψ0
T (m

2)).

This means that Ytn is a Cauchy sequence in dT ,p, hence there exists a limit, denoted as Yt∞. It can be
verified that Yt∞ is a strong solution to the stochastic differential equation (4.1). Proposition 4.4 in [5]
confirms that this solution will produce a density function that is a solution to equation (1.1).
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