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Abstract
In this paper we consider a long flexible Euler-Bernoulli beam with boundary conditions imposed at the two ends, the

resulting model being called hybrid system. The beam is hybrid in the sense that it holds both rigid and elastic motions. Our
main result is to show the existence and uniqueness of the weak solution of close-loop system. The closed-loop system stability
is shown through Lyapunov-based analysis.
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1. Introduction

Among various flexible members, the beam element has found its way into many applications such
as flexible robots, civil engineering structures, aircraft wing, and space mechanisms. The flexible beam
submitted to our study consists of a long flexible mast M or elastic beam joining two rigid bodies. One
rigid body represents the space shuttle orbiter S, the other represents the antenna reflector A, each with
prescribed inertial properties and each being controlled through ordinary differential equations (ODE),
whereas the flexible mast satisfies a partial differential equation (PDE) with boundary conditions imposed
at the two ends by the control forces and torques acting on S and A. The length of the beam is chosen to
be l. Let us proceed to the statement of the problem. Consider the hyperbolic equation

ρ(x)utt(x, t) + (EI(x)uxx(x, t))xx = 0,x ∈ (0, l), t > 0,

with the initial conditions

u(0, t) = ux(0, t) = 0, t > 0,

and the boundary conditions

mutt(l, t) − (EIuxx)x(l, t) = 0, t > 0, Juxtt(l, t) + EI(l)uxx(l, t) = z(t), t > 0,

where x stands for the position and t for the time. EI(x) is the flexural rigidity of the beam, ρ(x) is the
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mass density at x, m is the mass of the antenna A, and J the moment of inertia of A about its centroid, the
point of attachment of the mast M. z(t) is the control torque applied to A. In this paper, we shall always
assume that:

ρ(x),EI(x) ∈ C4[0, l]; ρ,EI,m, J > 0.

Now, we suppose a direct-strain feedback control, as in [11] and [14], z(t) = −kuxxt(l, t), k > 0 (k is a
real feedback gain). Then, the closed-loop system becomes:

ρ(x)utt(x, t) + (EI(x)uxx(x, t))xx = 0, x ∈ (0, l), t > 0, (1.1)
u(0, t) = ux(0, t) = 0, t > 0, (1.2)

mutt(l, t) − (EIuxx)x(l, t) = 0, t > 0, (1.3)
Juxtt(l, t) + EI(l)uxx(l, t) + kuxxt(l, t) = 0, t > 0. (1.4)

The energy associated to the above system E(t) = E(u, v, ξ,ψ) is given by

E(t) =
1
2

∫ l
0
EIu2

xxdx+
1
2

∫ l
0
ρv2dx+

1
2m

ξ2 +
1
2J
ψ2.

Following [7], the energy identity is given by

d

dt
E(t) = −

k

J
EI(l)u2

xxt(l) 6 0. (1.5)

The expression (1.5) shows that the energy E(t) is non-increasing and therefore defines a Lyapunov func-
tion.

In [9], the authors studied the uniform case where the system is modeled as a two-dimensional space-
structure. The mathematical side of controllability and stability of the hybrid system have been proved.
They also studied the strong stability in [10]. Using the concept of control by feedback boundary damp-
ing, this lead to an asymptotic stabilization. The uniform stability was studied in [14] using an energy
multipliers method. The existence and uniqueness in the uniform case have been studied in [11], using
properties of A-dependent operators.

We find in the literature several authors who have studied hybrid systems with variable coefficients,
see [5, 12, 16]. In [7], concerning the closed-loop system (1.1)-(1.4) for l = 1, it was shown that the
system under boundary feedback damping is a Riesz spectral system in the sense that the generalized
eigenfunctions of the system form a Riesz basis on the suitable Hilbert space. The author also studied
exponential stability under certain conditions. The spectrum-determined growth condition holds and
an asymptotic expression of the spectrum is obtained. Moreover, the exact controllability and exact
observability of the system are also presented.

The aim of this article is to show the existence, the uniqueness and higher regularity of the weak
solution of system after having formulated it as an evolution problem. To prove existence, we use the
intermediate spaces as defined in [8] and the Faedo-Galerkin method (see [12]).

Several authors have used this technique or method to show the existence and the uniqueness of
the solution of the Euler Bernoulli beam (EBB) problems (see [1, 3, 4]). In [3, 4] the EBB problems
are considered with constant coefficients, so the determination of spaces and the inner products for the
proof of existence and uniqueness are not difficult to find. Concerning [1], the problem is with variable
coefficients but the feedback conditions used are simple which makes the study a little more difficult than
the previous ones. The particularity of our article lies in the fact of considering this time a higher-order
feedback z(t) = −kuxxt(l, t). The question of whether the bilinear form b2(., .) was well written has
been a matter of much thought. This bilinear form appears in the definition of the weak solution and
complicates the application of standard techniques discussed in the aforementioned articles above. So we
are using new strategies.
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The content of this article is as follows. In the Section 2 of this paper, we formulate the system (1.1)-(1.4)
into an abstract Cauchy problem in Hilbert state space, and discuss some basic properties of system. The
stability analysis of the closed-loop system through Lyapunov method is presented in ”Stability analysis
using Lyapunov” subsequent subsection. In Section 3, we use the properties of existence, uniqueness and
higher regularity expressed in Lions [8], Yosida [17], and Temam [15], to show the existence of the weak
solution. For the methodology, we approach in the same sense as the work already carried out in [4] and
[12]. We end with a conclusion in Section 4.

2. Basic properties of the problem (1.1)-(1.4)

2.1. Formulation as an evolution problem
Let us introduce the following spaces:

Hm(0, l) = {u : [0, l] −→ C|u,u1 =
∂u

∂t
, . . . ,um =

∂mu

∂tm
∈ L2(0, l)},

we denote by ‖.‖m the associated norm of the space Hm(0, l) and

L2(0, l) = {u : [0, l] −→ C|

∫ l
0
|u|2dx <∞}

with ‖.‖ the associated norm of the space. D(0, l):= the space of smooth functions with compact support,
D ′(0, l):= the space of continuous linear functions. Moreover, we introduce functional space:

V = {u ∈ H2(0, l),u(0) = ux(0) = 0}

and the following Hilbert space:

X = {u = (f,g, ξ,ψ)T |f ∈ V ,g ∈ L2(0, l), ξ,ψ ∈ C} = V × L2(0, l)×C2,

the superscript T stands for the transpose. The space X is called energy space of the system (1.1)-(1.4). In
the space X, we define the inner-product:

(u, v)X =

∫ l
0
EI(x)f

′′
1 (x)f

′′
2 (x)dx+

∫ l
0
ρ(x)g1(x)g2(x)dx+

1
m
ξ1ξ2 +

1
J
ψ1ψ2,

where u = (f1,g1, ξ1,ψ1)
T ∈ X, v = ut = (f2,g2, ξ2,ψ2)

T ∈ X and g2(x) denotes the complex conjugate of
g2(x). We denote by ‖.‖X the norm associated to the inner-product in the space X.

Next, we define an unbounded linear operator A : D(A) ⊂ X −→ X as follows:

A


f

g

ξ

ψ

 =


g

−
1
ρ(x)

(EI(x)f
′′
(x))

′′

(EIf
′′
) ′(l)

−EI(l)f
′′
(l)


with the domain:

D(A) = {(f,g, ξ,ψ) ∈ (H4(0, l)∩ V)× V ×C2|ξ = mg(l),ψ = Jg ′(l) + kf
′′
(l)}.

The set of equations (1.1)-(1.4) can be formally written as a first order evolution problem
d

dt
w(t) = Aw(t),

w(0) = w0 ∈ X,
(2.1)
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where

w(t) = (u(., t),ut(., t),mut(l, t), Juxt(l, t) + kuxx(l, t))T , w0 = (u0,u1,mu1(l), Ju ′1(l) + ku
′′
0 (l))

T , ∀t > 0

with

u(x, 0) = u0(x),ut(x, 0) = u1(x), mut(l, 0) = mu1(l), Juxt(l, 0) + kuxx(l, 0) = Ju ′1(l) + ku
′′
0 (l).

It is known [13] that this result follows immediately from the theory of operator semigroups.

Theorem 2.1. The operator A defined as before generates aC0-semigroup of contractions on X, denoted by {S(t)}t>0.

Proof. We will firstly show that the operator A is dissipative. Let u = (f,g, ξ,ψ)T ∈ D(A),

(Au,u)X =

∫ l
0
[EI(x)g

′′
(x)f

′′
(x) − (EI(x)f

′′
(x))

′′
g(x)]dx+

1
m

(EIf
′′
) ′(l)ξ−

1
J
EI(l)f

′′
(l)ψ.

Integrating twice by parts and using the boundary conditions (1.2)-(1.4) with g(0) = 0, after simplification,
we get the following requirement:

(Au,u)X =

∫ l
0
EI(x)[g

′′
(x)f

′′
(x) − f

′′
(x)g

′′
(x)]dx− (EI(l)f

′′
(l)) ′g(l) + EI(l)f

′′
(l)g ′(l)

+
1
m

(EIf
′′
) ′(l)ξ−

1
J
EI(l)f

′′
(l)ψ,

(Au,u)X =

∫ l
0
EI(x)[g

′′
(x)f

′′
(x) − f

′′
(x)g

′′
(x)]dx− (EI(l)f

′′
(l)) ′g(l) + (EIf

′′
) ′(l)g(l) −

k

J
EI(l)|f

′′
(l)|2.

Taking the real part of (Au,u)X, we obtain Re(Au,u)X = −
k

J
EI(l)|f

′′
(l)|2 6 0, with g = ft for all u =

(f,g, ξ,ψ)T ∈ D(A). It follows that the operator A is dissipative.
Let show that the operator is m-dissipative. To do this, we just prove that (I−A) is surjective. Let

z = (f,g,Λ,Ξ)T ∈ X, we need to find w = (u, v, ξ,ψ)T ∈ D(A) such as:

(I−A)w = z,

in other words, such that the following equations are satisfied:

v = u− f, (2.2)
ρv+ (EIuxx)xx = ρg, (2.3)

(EI(l)uxx)x(l) −mu(l) = −Λ−mf(l), (2.4)
EI(l)uxx(l) + Jux(l) + kuxx(l) = Ξ+ Jfx(l), (2.5)

u(0, t) = ux(0, t) = 0, (2.6)
(EIuxx)x(l, t) = mv(l) −mg(l), (2.7)

−EI(l)uxx(l, t) = Jvx(l) + Jgx(l) + kvxx(l), (2.8)

where u ∈ H2(0, l) et f = u− v ∈ L2(0, l).
Now we write the system of equations (2.3)-(2.8) in the weak form. Multiplying (2.3) by φ ∈ V and

integrating over (0, l), we have:∫ l
0
ρ(x)v(x)φ(x)dx+

∫ l
0
(EI(x)u(x)xx)xxφ(x)dx =

∫ l
0
ρ(x)g(x)φ(x)dx.
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Using (2.2), we get∫ l
0
ρ(x)u(x)φ(x)dx+

∫ l
0
(EI(x)u(x)xx)xxφ(x)dx =

∫ l
0
ρ(x)(f+ g)(x)φ(x)dx.

Integrating twice by parts
∫ l

0
(EI(x)u(x)xx)xxφ(x)dx and taking into account the boundary conditions (2.6)

to (2.8) yields:∫ l
0
ρuφdx+

∫ l
0
EIuxxφxxdx+ (EIuxx)x(l)φ(l) − EI(l)uxx(l)φx(l)

=

∫ l
0
ρ(x)(f+ g)(x)φ(x)dx

∫ l
0
ρuφdx+

∫ l
0
EIuxxφxxdx+mu(l)φ(l) + (Jux(l) + kuxx(l))φx(l)

=

∫ l
0
ρ(x)(f+ g)(x)φ(x)dx+m(f+ g)(l)φ(l) + (Jfx(l) + Jgx(l) + kfxx(l))φx(l).

(2.9)

Now, for all (u,φ)T ∈ V × V , we set

a(u,φ) =
∫ l

0
ρuφdx+

∫ l
0
EIuxxφxxdx+mu(l)φ(l) + (Jux(l) + kuxx(l))φx(l).

It is clear that a(., .) is symmetric bilinear form, bounded and coercive on V ×V . We define the continuous
linear form L on V by

L(f) =

∫ l
0
ρ(x)(f+ g)(x)φ(x)dx+m(f+ g)(l)φ(l) + (Jfx(l) + Jgx(l) + kfxx(l))φx(l).

The Lax-Milgram theorem allows us to conclude the existence and uniqueness of the solution u ∈ V such
as a(u,φ) = L(φ) for all φ ∈ V .

2.2. Regularity of the solution

Let φ ∈ D(0, l), integrating twice by parts (2.9), yields∫ l
0
ρuφdx+

∫ l
0
(EIuxx)xxφdx =

∫ l
0

˜lφdx with ˜l = ρ(f+ g)

or even ∫ l
0
(ρu+ (EIuxx)xx − ˜l)φdx = 0,

this implies that
(ρu+ (EIuxx)xx − ˜l)φ = 0, ∀φ ∈ D(0, l).

Thereby
ρu+ (EIuxx)xx − ˜l = 0 in D ′(0, l), (2.10)

and also in L2(0, l), as:
(EIuxx)xx = ˜l− ρu in L2(0, l)

and therefore, the equation (2.10) is in the sense of L2(0, l). Using in particular φ ∈ V , we find boundary
conditions (2.6)-(2.8). Hence there is a unique solution u ∈ H4(0, l)∩ V of problem (2.2)-(2.8). This shows
that (I−A) is surjective, then the operator A is m-dissipative. So by the Lumer-Phillips Theorem (see,
e.g., [13]), A is infinitesimal generator of a C0-semigroup of contractions.
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Remark 2.2. A being m-dissipative on the Hilbert space X, its domain D(A) is dense in X.

The following lemma is a direct consequence of the Remark 2.2 and the semigroups theory of linear
operators.

Lemma 2.3. For any initial condition w0 ∈ D(A), the equation (2.1) admits a unique strong solution w ∈
C1([0,∞),X)∩C0([0,∞),D(A)). Hence u ∈ C2([0,∞),L2(0, l))∩C1([0,∞),V)∩C0([0,∞),H4(0, l)∩ V).

The next result follows immediately from Theorem 2.1.

Theorem 2.4. The equation (2.1) has a unique solution w(t) = S(t)w0 ∈ C([0,∞],X),∀ w0 ∈ X.

Proof. The application S(t) defined by D(A) −→ X w0 7−→ w(t) extends in a contraction S(t) on X such
that (S(t))t>0 is strongly continuous and for any initial condition w0 ∈ X, the weak solution of (2.1) is
defined by w(t) = S(t)w0, ∀ t > 0, with w(t) ∈ C0([0,∞),X). Thus, we have

u ∈ C1([0,∞[,L2(0, l))∩C0([0,∞),V).

2.3. Stability analysis using Lyapunov
To analyze the stability of the closed-loop beam under the proposed boundary control laws, consider

the following Lyapunov candidate p : X −→ R defined by:

p(w) =
1
2
‖w‖2

X =
1
2

(∫ l
0
[EI(x)|uxx|

2 + ρ(x)|v|2]dx+m−1|ξ|2 + J−1|ψ|2

)
. (2.11)

Analogously as in (1.5), for all classical solutions w, it follows that the time derivative of the Lyapunov
candidate (2.11) satisfies:

d

dt
p(w) =

d

dt
‖w‖2

X = −
k

J
EI(l)u2

xxt(l) 6 0, (2.12)

hence time evolution of the Lyapunov functional p along the classical solutions is non-increasing. We can
say that the system (2.1) is stable in the sense of Lyapunov. Furthermore, from Theorem 2.1, the decay of
energy along the classical solutions can be extended to mild solutions.

Theorem 2.5. Assume thatw(t) is the mild solution of (2.1) for allw0 ∈ X. Thenw(t) −→ 0 in X when t −→∞.

Now, the system of equations (1.1)-(1.4) is written in the weak form, and the existence and uniqueness
of the weak solution are demonstrated.

3. Existence, uniqueness, and higher regularity of the weak solution

3.1. Weak formulation
Multiplying the equation ρ(x)utt(x, t) + (EI(x)uxx(x, t))xx = 0 by φ(x) ∈ V and integrating over (0, l),

we have: ∫ l
0
ρ(x)uttφ(x)dx+

∫ l
0
(EI(x)uxx)xxφ(x)dx = 0, ∀φ ∈ V , t > 0.

Integrating twice by parts and taking into account the boundary conditions it follows:∫ l
0
ρuttφdx+

∫ l
0
EIuxxφxxdx+ (EIuxx)x(l, t)φ(l) − EI(l)uxxφx(l) = 0, ∀φ ∈ V , t > 0.
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∫ l
0
ρuttφdx+

∫ l
0
EIuxxφxxdx+mutt(l, t)φ(l) + Juxtt(l, t)φx(l) + kuxxt(l, t)φx(l) = 0, ∀φ ∈ V , t > 0. (3.1)

The first step in the definition of the weak formulation is the appropriate space setting. Following [2], we
will define two Hilbert spaces which will allow us to reach the definition of a weak solution. The first
Hilbert space is defined by Y = R2 × L2(0, l) with the inner product:

< η, ξ >Y= Jη1ξ1 +mη2ξ2+ < ρη3, ξ3 >L2(0,l)

for all η = (η1,η2,η3), ξ = (ξ1, ξ2, ξ3) ∈ Y. The second Hilbert space is the following space X = R2 × V =
{û = (ux(l),u(l),u);u ∈ V} with the inner product:

< û1, û2 >X= 〈(u1)xx, (u2)xx〉L2(0,l) .

It is natural to identify X with its dual X ′. The Hilbert space X is reflexive; that is to say, (X ′) ′ = X. It is
not difficult to show that X can be densely embedded in Y. Then the dual of Y is densely embedded in
the dual of X. Choose Y to be a pivot space, Y ≡ Y ′, then both X and Y are dense subspaces of X ′ and we
have

X ⊂ Y ≡ Y ′ ⊂ X ′.

Consider the bilinear forms:

b1 : X×X −→ R (û1, û2) 7→ b1(û1, û2) =< EIû1, û2 >X

and
b2 : Y × Y −→ R (η, ξ) 7→ b2(η, ξ) = k(η1)xξ1.

Let us give the definition of a weak solution.

Definition 3.1. Let T > 0 be fixed. We say that û = (ux(l),u(l),u) is a weak solution of problem (1.1)-(1.4)
on (0, 1) if û ∈ L2(0, T ;X)∩H1(0, T ; Y)∩H2(0, T ;X ′) and satisfies

< ûtt, φ̂ >X,X ′ +b1(û, φ̂) + b2(ût, φ̂) = 0 (3.2)

for almost everywhere t ∈ (0, T) and for all φ̂ ∈ X with the following initial conditions:

û(0) = û0 = ((u0)x(l),u0(l),u0) ∈ X, (3.3)
ût(0) = v̂0 = ((v0)x(l), v0(l), v0) ∈ Y. (3.4)

In the Definition 3.1, the bilinear form < ., . >X,X ′ is the duality pairing on X ′ × X (i.e., < ., . >X,X ′

is a bilinear functional on the product space X ′ × X ). Moreover, the duality pairing on X ′ × X can be
identified with the unique extension of the inner product in Y. Note that in the case where u ∈ H2(0, T ;X),
the formulation (3.2) is equivalent to equation (3.1).

3.2. Existence and uniqueness of the solution

In order to give a meaning to the initial conditions (3.3)-(3.4) we shall use the following lemma (special
case of Theorem 3.1 in [8]).

Lemma 3.2. Let X and Y be two Hilbert spaces, such that X is dense and continuously embedded in Y. Assume
that u ∈ L2(0, T ;X) and v = ut ∈ L2(0, T ; Y), then u ∈ C([0, T ]; [X, Y] 1

2
) after, possibly, a modification on a set of

measure zero.

Here the space [X, Y] 1
2

is called intermediate space and is defined as in [8]. It follows from [8] the
duality theorem:
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Lemma 3.3. Let X and Y be two Hilbert spaces, such that X is dense and continuous in Y. For all θ ∈ ]0, 1[,

[X, Y] ′θ = [Y ′,X ′]1−θ

with equivalent norms.

We present the assertion of the Theorem 3.4 which will help us in the proof of Theorem 3.5.

Theorem 3.4. Let V be a subspace of H2(0, l). Then there exists a infinite sequence of functions {φi}∞i=1 such that:
{φi}

∞
i=1 is an orthogonal basis of V and {φi}

∞
i=1 is an orthonormal basis of L2(0, l).

Proof. see [4, 12].

3.2.1. Existence of the weak solution
Theorem 3.5. The weak formulation (3.2)-(3.4) has a unique solution û such that:

û ∈ L∞(0, T ;X), ût ∈ L∞(0, T ; Y), (3.5)
û ∈ C([0, T ]; [X, Y] 1

2
), (3.6)

ût ∈ C([0, T ]; [X, Y] ′1
2
). (3.7)

The following proof is an adaption of the proof of Theorem 8.1 in [8], for the system studied here.

Proof. Let {φ̂i}∞i=1 be a sequence of functions that is an orthonormal basis for Y, and an orthogonal basis
for X according to Theorem 3.4. We introduce the following finite dimensional spaces spanned by {φ̂i}

m
i=1

given by:

∀m ∈N, V̂m := span{φ̂1, . . . , φ̂m} = {

m∑
j=1

αjφ̂j; α1,α2, . . . ,αm ∈ R}.

Step 1: Construction of approximate solutions.
We seek û = ûm(t) ∈ V̂m the approximate solution of the problem in the form:

ûm(t) =

m∑
i=1

`g
im

(t)φ̂i,

where `g
im

(t) ∈ R (0 6 t 6 T , i = 1, . . . ,m) solves the formulation (3.2) on V̂m. For a fixed m ∈ N, it
follows

< (ûm)tt, φ̂ >Y +b1(ûm, φ̂) + b2((ûm)t, φ̂) = 0 ∀φ̂ ∈ V̂m. (3.8)

And (3.8) is completed with the initial conditions:

ûm(0) = ûm0, ûm0 =

m∑
i=1

αimφ̂i −→ û0 in X when m −→∞, (3.9)

v̂m(0) = v̂m0, v̂m0 =

m∑
i=1

βimφ̂i −→ v̂0 in Y when m −→∞, (3.10)

with αim = `g
im

(0) and βim = (`g
im

)t(0). The ordinary differential equation of the second order thus

obtained admits a unique solution ûm ∈ C2([0, T ];X) of (3.8)-(3.10) pour 0 6 t 6 T .

Step 2: A-priori estimates on approximate solutions.
Let Ê : R×X −→ R an energy functional, analogous to the Lyapunov functional in (2.11):

Ê(t, û) =
1
2

∫ l
0
EIû2

xxdx+
1
2

∫ l
0
ρû2
tdx+

1
2m

(mût(l))
2 +

1
2J

[Jûxt(l) + kûxx(l)]
2,

Ê(t, û) = ‖(u,ut,mut(l), Jutx(l) + kuxx(l))‖X.

For a solution ûm ∈ C2([0, τ]; V̂m) of (3.8) and taking φ̂ = (ûm)t in (3.8), a straightforward calculation
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yields
d

dt
Ê(t, ûm) = −

k

J
EI(l) [{((ûm)1)x}t(t)]

2 6 0,

for all t ∈ [0, τ]. Dissipation of the functional Ê corresponds to the decay in (2.12) for the classical solution.
Hence,

Ê(t, ûm) 6 Ê(0, ûm0), t > 0,

which implies:

{ûm}m∈N is bounded in C([0, T ];X), (3.11)
{(ûm)t}m∈N is bounded in C([0, T ]; Y). (3.12)

Considering the boundedness results in (3.11)-(3.12), for all φ̂ ∈ X, we have:

|b1(ûm(t), φ̂) + b2((ûm)t(t), φ̂)|6M‖φ̂‖X, ∀t ∈ [0, T ], (3.13)

where M is a positive constant which does not depend on m. Let m ∈ N be fixed. Also, we consider
φ̂ ∈ X and φ̂ = ϕ̂1 + ϕ̂2 such that ϕ̂1 ∈ V̂m and ϕ̂2 orthogonal to V̂m in Y. Then we obtain

< (ûm)tt, φ̂ >Y=< (ûm)tt, ϕ̂1 >Y .

From (3.8) and (3.13), we have:

< (ûm)tt, φ̂ >Y= −b1(ûm(t), ϕ̂1) − b2((ûm)t(t), ϕ̂1) 6M‖ϕ̂1‖X 6M‖φ̂‖X.

This implies that:
({ûm)tt}m∈N is bounded in C([0, T ];X ′).

Step 3: Passage to the limit.
According to the Eberlein-Šmulian Theorem in [6, 17], we can extract weakly convergent subsequences

{ûml
}l∈N, {(ûml

)t}l∈N and {(ûml
)tt}l∈N with û ∈ L2(0, T ;X), ût ∈ L2(0, T ; Y) and ûtt ∈ L2(0, T ;X ′) such

that:

{ûml
} ⇀ û in L2(0, T ;X), (3.14)

{(ûml
)t} ⇀ ût in L2(0, T ; Y), (3.15)

{(ûml
)tt} ⇀ ûtt in L2(0, T ;X ′). (3.16)

Moreover (3.15) yields
{((û1)ml

)t} ⇀ (û1)t in L2(0, T ; R)

for almost every t ∈ [0, T ]. Let m0 ∈N. For all functions ϕ̂ ∈ L2(0, T ; V̂m0) of the form

ϕ̂(t, x) =
m0∑
j=1

κj(t)φj(x), (3.17)

where κj ∈ L2(0, T ; R) and for all ml > m0, the formulation (3.8) becames∫T
0
< (ûml

)tt, ϕ̂ >Y +b1(ûml
, ϕ̂) + b2((ûml

)t, ϕ̂)dt = 0. (3.18)

Therefore, passing to the limit in (3.18) for m = ml, when l −→ ∞ and using the convergence results
(3.14)-(3.16), we obtain ∫T

0
< ûtt, ϕ̂ >X,X ′ +b1(û, ϕ̂) + b2(ût, ϕ̂)dt = 0, (3.19)
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consequently < ûtt, ϕ̂ >X,X ′ +b1(û, ϕ̂) + b2(ût, ϕ̂) = 0 on [0, T ] for all ϕ̂ ∈ L2(0, T ;X). The functions ϕ̂
of (3.17) are dense in L2(0, T ;X) and therefore (3.19) is well defined for any ϕ̂ ∈ L2(0, T ;X). This implies
that the expression of the weak formulation (3.2) is satisfied almost everywhere on [0, T ]. Hence û is the
solution of the weak formulation.

Concerning additional regularities, by definition of weak solution and (3.11)-(3.12), û satisfies (3.5).
As for (3.6), it immediately arises from the Lemma 3.2, after, possibly a modification on a set of measure
zero, and finally, the regularity (3.7) is deduced from the Lemma 3.2 and from Lemma 3.3.

The proof of the existence of the weak solution is now complete. Before showing the uniqueness of
the solution, we prove that the solution û satisfies initial conditions (3.3)-(3.4). Let φ̂ ∈ C2([0, T ]; Y) such
that φ̂(T) = 0 and φ̂t(T) = 0. Integrating (3.2) on [0, T ], we have:∫T

0

[
< ûtt, φ̂ >X,X ′ +b1(û, φ̂) + b2(ût, φ̂)

]
dτ = 0.

Integrating twice by parts on [0, T ] under the duality pairing, we have:∫T
0

[
< û, φ̂tt >Y +b1(û, φ̂) + b2(ût, φ̂)

]
dτ =< ût(0), φ̂(0) >X,X ′ − < û(0), φ̂t(0) >Y . (3.20)

For a fixed m, similarly from (3.8), it follows:∫T
0

[
< ûm, φ̂tt >Y +b1(ûm, φ̂) + b2((ûm)t, φ̂)

]
dτ =< v̂m0, φ̂(0) >Y − < ûm0, φ̂t(0) >Y . (3.21)

Using (3.9)-(3.10) and (3.14)-(3.16), passing to the limit in (3.21) along the convergent subsequence, we
obtain: ∫T

0

[
< û, φ̂tt >Y +b1(û, φ̂) + b2(ût, φ̂)

]
dτ =< v̂0, φ̂(0) >Y − < û0, φ̂t(0) >Y . (3.22)

Comparing (3.20) with (3.22), we deduce that û(0) = û0 and ût(0) = v̂0 so initial conditions (3.3) and (3.4)
are verified.

3.2.2. Uniqueness of the Weak Solution
Theorem 3.6. The solution û of weak formulation (3.2) with the initial conditions (3.3)-(3.4) is unique.

Proof. Now, we show the uniqueness of the weak solution of (3.2). For this, let fix 0 6 s 6 T and let
introduce this auxiliary function: ψ̂ : ]0, T [−→ R,

ψ̂(t) :=

{∫s
t û(τ)dτ, 0 < t < s,

0, t > s.

Integrating (3.2) on [0, T [, using one integration by part and taking ψ̂(t) = φ̂(t) in (3.2), we have∫s
0

[
< ût(τ), û(τ) >Y −b1(ψ̂t(τ), ψ̂(τ)) + b2(û(τ), û(τ))

]
dτ = 0. (3.23)

We deduce from (3.23),∫s
0

d

dt

[1
2
‖û(τ)‖2

Y −
1
2
b1(ψ̂(τ), ψ̂(τ))

]
dτ = −

∫s
0
b2(û(τ), û(τ))dτ.

This is equivalent to [1
2
‖û(τ)‖2

X −
1
2
b1(ψ̂(τ), ψ̂(τ))

]s
0
= −

∫s
0
b2(û(τ), û(τ))dτ.

Therefore
1
2
‖û(s)‖2

X +
1
2
b1(ψ̂(0), ψ̂(0)) 6 0.

Since the bilinear form b1(., .) is coercive, û(s) ≡ 0 and ψ̂(0) = 0. As s ∈]0, T [ was arbitrairy, then û ≡ 0.
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Due to the spaces defined above under [2], we were able to give the definition of a weak solution, to
show the existence and the uniqueness. Now, we show the regularity of the solution.

3.3. Higher regularity results
Here, we recall the Lemma 8.1 of [8] which will be used in the next theorem. Before, let’s give the

following definition.

Definition 3.7. Let Y be a Banach space. Then

Cu([0, T ]; Y) = {u ∈ L∞(0, T ; Y) : t 7−→< f,u(t) > is continuous on [0, T ],∀f ∈ Y ′}

denotes the space of weakly continuous functions with values in Y.

Lemma 3.8. Let X and Y be two Banach spaces, X ⊂ Y with continuous injection, and X being reflexive. Then

L∞(0, T ;X)∩Cu(0, T ; Y) = Cu(0, T ;X).

Theorem 3.9. The weak solution û of (3.2)-(3.4) satisfies

û ∈ C([0, T ];X), ût ∈ C([0, T ]; Y),

after, possibly, a modification on a set of measure zero.

Proof. This proof is an adaption of standard strategies to the situation at hand (cf. Section 8.4 of [8] and
the section 2.4 of [15]). Using Lemma 3.8, it follows from (3.5)-(3.7) that û ∈ Cu([0, T ];X). In addition,
(3.5) and (3.7) imply that ût ∈ Cu([0, T ]; Y). We set ξ ∈ C∞(R) a fixed scalar function such as ξ(x) = 1 if
x ∈ J ⊂⊂ [0, T ] and ξ(x) = 0 else. The function ξû is compactly supported. Let ηε be a standard mollifier
in time. For example, the function may be given by

ηε(t) := ε−1η(
t

ε
),

where

η(t) :=

{
C exp[1/(1 − |t|2)], |t| < 1,
0, |t| > 1,

belongs to C∞c (R) for any constant C. We choose C such that
∫

R
ηdx = 1. We set ûε := ηε ∗ξû ∈ C∞c (R,X).

ûε converges to û in X and (ûε)t converges to ût a.e. in Y for all element on J. Hence, Ê(t, ûε) converges
to Ê(t, û) a.e. on J. Since ûε is smooth, a straightforward calculation on J gives:

d

dt
Ê(t, ûε) = −

k

J
EI(l) [(((ûε)t)1)x(t)]

2 .

Passing to the limit when ε −→ 0,

d

dt
Ê(t, û) = −

k

J
EI(l) [((ût)1)x(t)]

2 (3.24)

holds in the sense of distributions on J. Since J was arbitrary, (3.24) holds on all compact subintervals of
[0, T ]. Let t ∈ [0,∞[ be fixed and limn−→∞ tn = t. Taking the sequence (σn)n∈N defined by

σn =
1
2
‖
√
EI(û(t) − û(tn))‖2

X +
1
2
‖ût(t) − ût(tn)‖2

Y

+ k [(û1)t(t)(û1)x(t) − (û1)t(tn)(û1)x(tn)] +
1
2J

(k(û1)x(t) − k(û1)x(tn))
2 ,
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we have for all n ∈N,

σn = Ê(t, û) + Ê(tn, û)− < EIû(t), û(tn) >X − < ût(t), ût(tn) >Y −
k2

J
(û1)x(t)(û1)x(tn). (3.25)

Since û, ût are weakly continuous and Ê is continuous in t, passing to the limit in (3.25), it follows:

σn −→ 0, when n −→∞.

Therefore, this implies that

‖û(t) − û(tn)‖2
X −→ 0 when n −→∞, ‖ût(t) − ût(tn)‖2

Y −→ 0 when n −→∞.

Thus, we get û ∈ C([0, T ];X) and ût ∈ C([0, T ]; Y).

4. Conclusion

In this paper, a long flexible Euler-Bernoulli beam with boundary conditions imposed at the two ends
is developed. The definition of good spaces due to [2], the use of intermediate spaces and the Faedo-
Galerkin method play a very large role in demonstration of the existence and uniqueness of the solution
in the Euler-Bernoulli beam equation with variable coefficient . In addition, our proposed scheme can be
also extended to other Euler-Bernoulli beam problems.
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