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Abstract

In this paper, a Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic model with application to
COVID-19 is established by capturing the key features of the disease. The global dynamics of the model is analyzed by construct-
ing appropriate Lyapunov functions utilizing the basic reproduction number R0 as an index. We obtain that when R0 < 1, the
disease-free equilibrium is globally asymptotically stable. While for R0 > 1, the endemic equilibrium is globally asymptotically
stable. Furthermore, we consider the pulse vaccination for the disease and give an impulsive differential equations model. The
definition of the basic reproduction number R0 of this system is given by utilizing the next generation operator. By the com-
parison theorem and persistent theory, we obtain that when R0 < 1, the disease-free periodic solution is globally asymptotically
stable. Otherwise, the disease will persist and there will be at least one nontrivial periodic solution. Numerical simulations to
verify our conclusions are given at the end of each of these theorems.
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1. Introduction

The ongoing COVID-19 is the largest pandemic worldwide nowadays. Researches about the virus and
how the virus influences the infected persons are still in progress [5–9, 14, 23, 26]. However, an important
observation is that the incubation period of the virus ranges from 1 to 14 days with an approximate
median 5 days [19], and individuals in incubation period can also carry the virus and infect others.
Another key feature is that an infected person can spread the disease before showing any symptoms [13].
Therefore, individuals in the incubation period and those infected but asymptomatic are hidden virus
carriers and disease spreaders, whose presence is a great threat and challenge for disease control and
healthcare capacity buildup or the relaxation of lockdown measures [10].

A large number of mathematical models have so far been publicly released to study the transmission
and control of the disease, which are built according to capturing the key features of COVID-19 [10, 12, 29,
30] to name a few. The incubation stage is addressed by considering an exposed compartment E [29, 30],
however, all these models assume E carries the pathogen but cannot infect others. While the address of
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absence or presence of symptoms varies. In study [29], the infected individuals are accounted in separate
classes A and I with detected asymptomatically or symptomatically. In the analysis performed in [11],
the authors considered three different severity levels of infected, including prodromic, asymptomatic and
symptomatic phases. Then what we intend to do in this paper is to establish a SEAIR epidemic model
with considering the infectiveness of the exposed class and the infected with or without symptoms based
on the two main features of the disease.

In epidemiological models global stability is more appreciated in policy making. The experienced
and successful method in establishing global stability is to construct appropriate Lyapunov function [16,
17, 32] and apply LaSalle’s invariance principle [18]. There definitely exists a Lyapunov function if the
equilibrium is globally stable [15, 21]. However, how to choose the exact expression of the Lyapunov
function, and further how to illustrate that the derivative of the Lyapunov function along the solutions
of the model is negative definite or semidefinite remain challenged. In this paper, we apply an algebraic
approach [22] to determine the coefficients of the combinations u− u∗ − u∗ ln u

u∗ , and further to express
the derivative of the Lyapunov function as sums of the form mk(nk − xk,1 − xk,2 − · · · − xk,nk), where
mk > 0, xk,i, i = 1, 2, . . . ,nk, satisfies

∏nk
i=1 xk,i = 1. Then by the property that the arithmetic mean is

greater than or equal to the geometric mean, we can obtain that the derivative of the Lyapunov function
along the solutions of the model is negative.

Immunization is the most economical and effective measure that benefits the entire human race from
a global perspective and the history of human development. Continuous vaccination [27] requires that
at least 95% of children should be immunized shortly after birth. In fact, it is difficult and expensive to
implement vaccination for such a wide population coverage. Therefore, pulse vaccination to vaccinate a
proportion of the susceptible at some intervals is more advantageous. The COVID-19 vaccine currently
being developed and put into use is a preventive one. According to the key features of the disease, we
establish a dynamic model with pulse vaccination [27, 28]. By using persistent theory [33, 36] and the
comparison theorem of impulse differential equations [33, 36], we analyze the persistence of the disease
by defining the basic reproduction number as the next infection operator.

The rest of this paper is organized as follows. In Section 2, an SEAIR epidemic model with application
to COVID-19 is formulated. In Sections 3, the global asymptotic stability of the disease-free and the
endemic equilibria is derived. In Sections 4, we consider the model of COVID-19 with pulse vaccination
and analyze its persistence. We conclude the work in Section 5.

2. Model formulation

The populations are stratified as susceptible (S(t)), exposed (E(t)), infectious but asymptomatic (A(t)),
infectious with symptoms (I(t)) and recovered (R(t)), based on the two key features of COVID-19. Then
one has the following SEAIR compartmental model:

S ′ = Λ−βS(I+ θA+ νE) − µS,
E ′ = βS(I+ θA+ νE) − (δ+ µ)E,
A ′ = (1 − p)δE− (γ1 +α+ µ)A,
I ′ = pδE+αA− (γ2 + d+ µ)I,

(2.1)

and R ′ = γ1A+ γ2I− µR. The variable R can be decoupled from the first four equations, hence we omit it
in the following analysis. ′ is the derivative with respect to time t, Λ is the (constant) recruitment rate, β
is the transmission coefficient, θ and ν are the transmission coefficient regulators of asymptomatic A and
exposed E, respectively, µ is the natural death rate, while d is the disease-induced death rate, α is the rate
from asymptomatic to symptomatic infected persons, δ is the rate of exposed individuals to the infected
compartment, p is the probability of having symptoms among infected individuals, and γ1 and γ2 are the
recovery rates of asymptomatic and symptomatic infected persons, respectively.
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Summing equations in (2.1) yields(
S+ E+A+ I

) ′
= Λ− µ(S+ E+A+ I) − γ1A− γ2I−dI 6 Λ− µ(S+ E+A+ I),

hence, the solutions of system (2.1) are uniformly and ultimately bounded, i.e., S(t) +E(t) +A(t) + I(t) 6
Λ
µ . Therefore, in the following, the dynamics of system (2.1) will be analyzed in a bounded feasible region

Γ =

{
X =

(
S,E,A, I

)
∈ R4

+ : S(t) + E(t) +A(t) + I(t) 6
Λ

µ

}
.

The basic reproduction number R0 of system (2.1) can be obtained by applying the next generation
matrix method [31], which is

R0 = ρ


 νβS0 θβS0 βS0

0 0 0
0 0 0

 δ+ µ 0 0
−(1 − p)δ γ1 +α+ µ 0

−pδ −α γ2 + d+ µ

−1


= S0

[
νβ

δ+ µ
+

(1 − p)δθβ

(γ1 +α+ µ)(δ+ µ)
+

pδβ

(γ2 + d+ µ)(δ+ µ)
+

α(1 − p)δβ

(γ1 +α+ µ)(γ2 + d+ µ)(δ+ µ)

]
,

where ρ is the spectral radius of a matrix and S0 = Λ
µ .

Theorem 2.1. If the basic reproduction number R0 < 1, system (2.1) only has a disease-free equilibrium E0 =(
Λ
µ , 0, 0, 0

)
; while if R0 > 1, system (2.1) admits a disease-free equilibrium E0 and a unique endemic equilibrium

E1 = (S∗,E∗,A∗, I∗) given by

S∗ =
Λ

µR0
, E∗ =

µ(R0 − 1)
(δ+ µ)R0

, A∗ =
µδ(R0 − 1)(1 − p)

(γ1 +α+ µ)(δ+ µ)R0
, I∗ =

µδ(R0 − 1) [(γ1 +α+ µ)p+α(1 − p)]

(γ1 +α+ µ)(γ2 + d+ µ)(δ+ µ)R0
.

Proof. It can be easily seen that system (2.1) always has a disease-free equilibrium E0 =
(
Λ
µ , 0, 0, 0

)
. Set

the right-hand side of system (2.1) to be zero. Then, by the third and forth equations of system (2.1), one
can obtain

E =
γ1 +α+ µ

(1 − p)δ
A, I =

(
p

1 − p

γ1 +α+ µ

γ2 +α+ µ
+

α

γ2 +α+ µ

)
A.

By the second equation of system (2.1), one can obtain

S =
(δ+ µ)E

β(I+ θA+ νE)
=

(δ+ µ)(γ1 +α+ µ)

(1 − p)δβ
(
p

1−p
γ1+α+µ
γ2+α+µ

+ α
γ2+α+µ

+ θ+
ν(γ1+α+µ)

(1−p)δ

)
=

(δ+ µ)(γ1 +α+ µ)
δβp(γ1+α+µ)
γ2+α+µ

+
(1−p)δβα
γ2+α+µ

+ (1 − p)δβθ+ νβ(γ1 +α+ µ)
=
Λ

µ

1
R0

.

On the other hand,

I+ θA+ νE =

(
p(γ1 +α+ µ)

(1 − p)(γ2 +α+ µ)
+

α

γ2 +α+ µ
+
ν(γ1 +α+ µ)

(1 − p)δ

)
A,

by the first equation of system (2.1), there also holds

I+ θA+ νE =
Λ− µS

βS
=
µ

β
(R0 − 1).

Hence, the expression for A can be obtained. According to the relationship between E, I with A, we can
obtain the expression of the endemic equilibrium, which exists when the basic reproduction number is
larger than 1. This finishes the proof.
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3. Threshold dynamics

3.1. Global asymptotic stability of the disease-free equilibrium
Theorem 3.1. If the basic reproduction number R0 < 1, then the disease-free equilibrium E0 =

(
Λ
µ , 0, 0, 0

)
is

globally asymptotically stable.

Proof.

(i) Firstly, we show that E0 is locally stable by linearizing system (2.1) at E0. The Jacobian matrix of system
(2.1) at E0 reads

J(E0) =


−µ −βνΛµ −βθΛµ −βΛµ
0 βνΛµ − (δ+ µ) βθΛµ βΛµ
0 (1 − p)δ −(γ1 +α+ µ) 0
0 pδ α −(γ2 + d+ µ)

 .

Then the characteristic equation can be expressed as

w0(λ) =
∣∣λH− J(E0)

∣∣ = (λ+ µ)f(λ) = 0, (3.1)

where H is a 4× 4 identity matrix, and f(λ) = λ3 + a1λ
2 + a2λ+ a3 with

a1 = a+ b+ c,

a2 = ab+

(
bc−βpδ

Λ

µ

)
+

(
ac− (1 − p)δβθ

Λ

µ

)
,

a3 = abc−αβ(1 − p)δ
Λ

µ
−βpδa

Λ

µ
− (1 − p)δβθb

Λ

µ
,

and
a = (γ1 +α+ µ), b = (γ2 + d+ µ), c = −

{
βν
Λ

µ
− (δ+ µ)

}
.

Since R0 < 1, then a, b and c are all positive values. Obviously, the characteristic equation has a negative
eigenvalue −µ, then what we need to do is to explore the roots of f(λ) = 0. It can be easily seen a1 > 0.
Also, a2 > ab > 0 and a3 > 0 hold since R0 < 1. According to the Descartes’ Sign Rules, f(λ) = 0 has three
negative real roots. What follows is all the eigenvalues of the characteristic equation (3.1) are negative.
Hence, E0 is locally stable.

(ii) Secondly, we illustrate that E0 is globally attractive by constructing suitable Lyapunov function. Define
a Lyapunov function

V(t) =
(
S− S0 lnS

)
+ E+A+ I.

The derivative of V(t) along solutions of system (2.1) is

dV

dt
=

(
1 −

S0

S

)
S ′ + E ′ +A ′ + I ′

=

(
1 −

S0

S

)
[Λ−βS(I+ θA+ νE) − µS] +βS(I+ θA+ νE) − (δ+ µ)E+ (1 − p)δE

− (γ1 + µ)A+ pδE+αA− (γ2 + d+ µ)I

=

(
1 −

S0

S

)
(Λ− µS) − S0β(I+ θA+ νE) − µE− (γ1 + µ)A− (γ2 + d+ µ)I

= Λ

(
1 −

S0

S

)
+ µS0

(
1 −

S

S0

)
− S0β(I+ θA+ νE) − µE− (γ1 + µ)A− (γ2 + d+ µ)I
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= Λ

(
2 −

S0

S
−
S

S0

)
− S0β(I+ θA+ νE) − µE− (γ1 + µ)A− (γ2 + d+ µ)I 6 0.

Obviously, the singleton E0 is the largest invariant set in
{
X ∈ Γ

∣∣dV
dt = 0

}
. The global attractivity of E0 is

then inducted by the LaSalle’s invariance principle [18]. Local stability and global attractivity lead to the
global asymptotic stability of E0.
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Figure 1: The disease-free equilibrium E0 is globally asymptotically stable when R0 = 0.2210 < 1. Λ = 30000; δ = 0.2; ν = 0.032;
θ = 0.045; µ = 0.0095; p = 0.69; γ1 = 0.1292; α = 0.1; γ2 = 0.0978; d = 0.008; and β = 0.00000001. S0 = 3157894.73684.

As is shown in Fig. 1, when the basic reproduction number R0 < 1, the disease-free equilibrium E0 is
globally asymptotically stable.

3.2. Global asymptotic stability of the endemic equilibrium

Theorem 3.2. If R0 > 1, the endemic equilibrium E1 = (S∗,E∗,A∗, I∗) is globally asymptotically stable.

Proof.

(i) Firstly, we show that E1 is locally stable by linearizing system (2.1) at E1. The Jacobian matrix of system
(2.1) at E1 reads

J(E1) =


−µR0 −βν Λ

µR0
−βθ Λ

µR0
−β Λ

µR0

µ(R0 − 1) βν Λ
µR0

− (δ+ µ) βθ Λ
µR0

β Λ
µR0

0 (1 − p)δ −(γ1 +α+ µ) 0
0 pδ α −(γ2 + d+ µ)

 .

Then the characteristic equation can be expressed as

w1(λ) =
∣∣λH− J(E1)

∣∣ = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4, (3.2)
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where

b1 = µR0 + a+ b+ l,

b2 = µR0(a+ b+ l) + (al+ ab+ bl) − pδβ
Λ

µR0
− (1 − p)θδβ

Λ

µR0
+
βΛν(R0 − 1)

R0
,

b3 = µR0

[
(al+ ab+ bl) − pδβ

Λ

µR0
− (1 − p)θδβ

Λ

µR0

]
+ abl−α(1 − p)δβ

Λ

µR0
− pδβ

Λ

µR0
a

− (1 − p)θδβ
Λ

µR0
b+

βΛ(R0 − 1)
R0

[
(a+ b)ν+ pδ+ (1 − p)θδ

]
,

b4 = µR0

[
abl−α(1 − p)δβ

Λ

µR0
− pδβ

Λ

µR0
a− (1 − p)θδβ

Λ

µR0
b
]
+ (R0 − 1)ab(δ+ µ)µ,

and

l = −

[
βν

Λ

µR0
− (δ+ µ)

]
> 0, since R0 > 1.

Obviously, b1 > 0. By technically complicated calculation, we can obtain

b2 = µR0(a+ b) + µR0(δ+ µ) + (a+ b)(δ+ µ) + ab− (a+ b)
βνΛ

µR0
− pδ

βΛ

µR0
− (1 − p)δ

βθΛ

µR0
−
βνΛ

µR0

= µR0(a+ b) + ab+Λ

[
(1 − p)δθβ

a
+
pδβ

b
+
α(1 − p)δβ

ab

]
+

(
1 −

1
R0

)
βΛν

+
Λ

µR0

[
b(1 − p)δθβ

a
+
apδβ

b
+
α(1 − p)δβ

ab

]
,

b3 = µR0(al+ ab+ bl) − pδβΛ− (1 − p)θδβΛ+ ab

[
(δ+ µ) −βν

Λ

µR0

]
−α(1 − p)δβ

Λ

µR0

− pδβ
Λ

µR0
a− (1 − p)θδβ

Λ

µR0
b+

βΛ(R0 − 1)
R0

[(a+ b)ν+ pδ+ (1 − p)θδ]

= Λ(a+ b)νβ

(
1 −

1
R0

)
+ (1 − p)δθβΛ

(
1 +

b

a
−

1
R0

)
+ pδβΛ

(
1 +

a

b
−

1
R0

)
+Λ(a+ b)

α(1 − p)δβ

ab
+ µR0ab,

b4 = ab(δ+ µ)µ(R0 − 1).

Since R0 > 1, b2 > 0, b3 > 0, and b4 > 0 hold, then it follows that all the coefficients of characteristic
equation (3.2) are positive. Agian, the Descartes’ Sign Rules indicates that all the eigenvalues of (3.2) are
negative. Hence, E1 is locally stable.

(ii) Secondly, we demonstrate that E1 is globally attractive by constructing suitable Lyapunov function
and choosing appropriate coefficients. Denote

x =
S

S∗
, y =

E

E∗
, z =

A

A∗
, u =

I

I∗
.

Then system (2.1) can be expressed as

x ′ = x

[
Λ
S∗

(
1
x − 1

)
−βI∗(u− 1) −βθA∗(z− 1) −βνE∗(y− 1)

]
,

y ′ = y

[
βS

∗I∗

E1

(
xu
y − 1

)
+ βθS∗A∗

E∗

(
xz
y − 1

)
+βνS∗(x− 1)

]
,

z ′ = z

[
(1 − p)δ E

∗

A∗

(
y
z − 1

)]
,

u ′ = u

[
pδE

∗

I∗

(
y
u − 1

)
+αA

∗

I∗

(
z
u − 1

)]
.

(3.3)
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Obviously, the endemic equilibrium E1 of system (2.1) is equivalent to the positive equilibrium Ē1 =
(1, 1, 1, 1) of system (3.3). And the global stability of Ē1 and E1 are the same, hence, we will discuss the
global stability of the equilibrium Ē1 of system (3.3) instead. In the following, the dynamics of system
(3.3) will be analyzed in a bounded feasible region

Ω =

{
X̄ =

(
x,y, z,u

)
∈ R4

+ : xS∗ + yE∗ + zA∗ + uI∗ 6
Λ

µ

}
.

Define the Lyapunov function

L = c1S
∗
(
x− 1 − ln x

)
+ c2E

∗
(
y− 1 − lny

)
+ c3A

∗
(
z− 1 − ln z

)
+ c4I

∗
(
u− 1 − lnu

)
,

where c1, c2, c3, and c4 are positive and left unspecified. The derivative of L along solutions of system
(3.3) is

L ′(t) = c1

(
2Λ−βθS∗A∗ −βS∗I∗ −βνS∗E∗

)
+ c2

(
βS∗I∗ +βθS∗A∗ +βνS∗E∗

)
+ c3

(
1 − p

)
δE∗

+ c4

(
pδE∗ +αA∗

)
+
(
− c1Λ+ c1βS

∗I∗ + c1βθS
∗A∗ + c1βνS

∗E∗ − c2βνS
∗E∗
)
x− c1Λ

1
x

+
(
− c1βS

∗I∗ + c2βS
∗I∗
)
xu+

(
c1βS

∗I∗ − c4pδE
∗ − c4αA

∗
)
u

+
(
− c1βθS

∗A∗ + c2βθS
∗A∗

)
xz

+

[
c1βθS

∗A∗ − c3

(
1 − p

)
δE∗ + c4αA

∗
]
z+

(
− c1βνS

∗E∗ + c2βνS
∗E∗
)
xy

+

[
c1βνS

∗E∗ + c3

(
1 − p

)
δE∗ + c4pδE

∗ − c2βS
∗I∗ − c2βθS

∗A∗ − c2βνS
∗E∗
]
y

− c3

(
1 − p

)
δE∗

y

z
− c4pδE

∗ y

u
− c4δA

∗ z

u
− c2βS

∗I∗
xu

y
− c2βθS

∗A∗
xz

y

=: F(x,y, z,u).

To determine c1, c2, c3, and c4 and prove that F(x,y, z,u) 6 0, we use the following method to rearrange
the items in F(x,y, z,u).

Table 1: The terms that corresponds to F(x,y, z,u).

x 1
x

y
z

y
u

z
u

xu
y

xz
y y u z xu xz xy Term

X X P1 := m1

(
2 − x− 1

x

)
X X X P2 := m2

(
3 − 1

x −
y
u − xu

y

)
X X X P3 := m3

(
3 − 1

x −
y
z −

xz
y

)
X X X X P4 := m4

(
4 − 1

x −
y
z −

z
u − xu

y

)
Step 1. Construct a table (Table 1). First, let all the terms appearing in F(x,y, z,u), including x, 1

x , yz , yu , zu ,
xu
y , xzy , y, u, z, xu, xz, xy be the entries in the first row and name them as Term in the last column. Second,

from the second row mark with a symbol Xwhere the product of some of the terms x, 1
x , yz , yu , zu , xuy ,

xz
y , y, u, z, xu, xz, xy equals one, then write the expression for Pk := mk

(
nk − xk,1 − xk,2 − · · ·− xk,nk

)
in the last column, where

∏nk
i=1 xk,i = 1, nk is the number of the terms xk,i, i = 1, 2, · · · ,nk, mk is a

non-negative number and left unspecified.
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Step 2. Let the coefficients of the unmarked terms with symbol Xin Table 1 for function F(x,y, z,u) be
zero, that is, the coefficients of y, u, z, xu, xz and xy terms are equal to zero, then we have the following
equation 

c1βνS
∗E∗ + c3(1 − p)δE∗ + c4pδE

∗ − c2βS
∗I∗ − c2βθS

∗A∗ − c2βνS
∗E∗ = 0,

c1βS
∗I∗ − c4pδE

∗ − c4αA
∗ = 0,

c1βθS
∗A∗ − c3(1 − p)δE∗ + c4αA

∗ = 0,
−c1βS

∗I∗ + c2βS
∗I∗ = 0,

−c1βθS
∗A∗ + c2βθS

∗A∗ = 0,
−c1βνS

∗E∗ + c2βνS
∗E∗ = 0.

(3.4)

By simple calculation, we can obtain

c2 = c1, c3 =

(
βθS∗A∗

(1 − p)δE∗
+

βS∗I∗αA∗

(1 − p)δE∗[pδE∗ + δA∗]

)
c1, c4 =

βS∗I∗

pδE∗ +αA∗
c1.

Set c1 = 1, then Eq. (3.4) admits one set of solutions

c1 = 1, c2 = 1, c3 =
βθS∗A∗

(1 − p)δE∗
+

βS∗I∗αA∗

(1 − p)δE∗[pδE∗ + δA∗]
, c4 =

βS∗I∗

pδE∗ +αA∗
.

Given c1, c2, c3 and c4 above, the Lyapunov function L is positive definite. Substituting the values of c1,
c2, c3 and c4 into function F(x,y, z,u) yields

F(x,y, z,u) = 2Λ+βθS∗A∗ +βS∗I∗ +
βS∗I∗αA∗

pδE∗ +αA∗
−
(
Λ−βS∗I∗ −βθS∗A∗

)
x−βθS∗A∗

xz

y

−Λ
1
x
−

(
βθS∗A∗ +

βS∗I∗αA∗

pδE∗ +αA∗

)
y

z
−
pδE∗βS∗I∗

pδE∗ +αA∗
y

u
−
βS∗I∗αA∗

pδE∗ +αA∗
z

u
−βS∗I∗

xu

y
.

Step 3. Let the coefficients for the same terms between F(x,y, z,u) and
∑4
i=1 Pk be equal, then we can

obtain the following equations

the coefficient of x : −m1 = −
(
Λ−βS∗I∗ −βθS∗A∗

)
,

the coefficient of 1
x : −m1 −m2 −m3 −m4 = −Λ,

the coefficient of y
z : −m3 −m4 = −

(
βθS∗A∗ + βS∗I∗αA∗

pδE∗+αA∗

)
,

the coefficient of y
u : −m2 = −pδE

∗βS∗I∗

pδE∗+αA∗ ,
the coefficient of z

u : −m4 = − βS∗I∗αA∗

pδE∗+αA∗ ,
the coefficient of xu

y : −m2 −m4 = −βS∗I∗,
the coefficient of xz

y : −m3 = −βθS∗A∗.

Further calculation yields

m1 = βS∗νE∗ + µS∗, m2 =
pδE∗βS∗I∗

pδE∗ +αA∗
, m3 = βθS∗A∗, m4 =

βS∗I∗αA∗

pδE∗ +αA∗
.

Obviously, m1, m2, m3 and m4 are all positive values.

Step 4. Compare the constant terms between F(x,y, z,u) and
∑4
i=1 Pk and verify their equality. Applying

the equations obtained in Step 3, the equality holds, that is,

2m1 + 3m2 + 3m3 + 4m4 = 2Λ+βθS∗A∗ +βS∗I∗ +
βS∗I∗αA∗

pδE∗ +αA∗
.
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Then by Steps 1-4, function F(x,y, z,u) can be expressed in the following form

F(x,y, z,u) =
(
βS∗νE∗ + µS∗

)(
2 − x−

1
x

)
+
pδE∗βS∗I∗

pδE∗ +αA∗

(
3 −

1
x
−
y

u
−
xu

y

)

+βθS∗A∗

(
3 −

1
x
−
y

z
−
xz

y

)
+
βS∗I∗αA∗

pδE∗ +αA∗

(
4 −

1
x
−
y

z
−
z

u
−
xu

y

)
.

According to that the arithmetic mean is greater than or equal to the geometric mean, there follows

F(x,y, z,u) 6 0. The equality holds only when x = 1 and y = u = z, that is,
{
(x,y, z,u) ∈ Ω : x = 1,y =

u = z

}
, which is equivalent to the set

{
(S,E,A, I) ∈ Γ

∣∣S = S∗, EE∗ = A
A∗ = I

I∗

}
⊂ Γ , whose maximum

invariant set is the singleton E1, then the endemic equilibrium E1 is globally asymptotically stable by the
LaSalle’s invariance principle [18].

As is shown in Fig. 2, if the basic reproduction number R0 = 2.210 > 1, then the endemic equilibrium
E1 is globally asymptotically stable.
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Figure 2: The endemic equilibrium E1 is globally asymptotically stable. R0 = 2.210 > 1. Λ = 30000; δ = 0.2; ν = 0.032; θ = 0.045;
µ = 0.0095; p = 0.69; γ1 = 0.1292; α = 0.1; γ2 = 0.0978; d = 0.008 and β = 0.0000001.

In view of the current situation that the government encourages people to vaccine against COVID-19,
we consider immunizing susceptible people based on the system (2.1) in the following.

4. Model with Pulse vaccination

Based on system (2.1), we establish the following dynamic model of COVID-19 with pulse vaccination

E ′(t) = βS(I+ θA+ νE) − (δ+ µ)E,
A ′(t) = (1 − p)δE− (γ1 +α+ µ)A,
I ′(t) = pδE+αA− (γ2 + d+ µ)I,
S ′(t) = Λ−βS(I+ θA+ νE) − µS,

 t 6= nT ,

E(nT+) = E(nT),A(nT+) = A(nT), I(nT+) = I(nT),
S(nT+) = (1 − p1)S(nT),

(4.1)
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R ′(t) = γ1A+ γ2I− µR,R(nT+) = R(nT) + p1S(nT). The proportion p1 of the susceptible is vaccinated
with time interval T ,n = 1, 2, . . . , and removes to recovered class R permanently. For R can be decoupled
from the first four equations, hence we omit it in the following analysis.

We first show that system (4.1) has a disease-free periodic solution. Let E = A = I = 0, system (4.1) is
then simplified to {

S ′(t) = Λ− µS, t 6= nT ,
S(nT+) = (1 − p1)S(nT), t = nT . (4.2)

According to the variation of constant formula, the solution of system (4.2) on the interval (nT , (n+ 1)T ]
is

S(t) =
Λ

µ
+ S(nT+)e−µ(t−nT) −

Λ

µ
e−µ(t−nT).

According to the second equation of system (4.2), we get the stroboscopic map

S((n+ 1)T+) = (1 − p1)S ((n+ 1)T) = (1 − p1)

[
Λ

µ
+ S(nT+)e−µT −

Λ

µ
e−µT

]
4
= fs

(
S(nT+)

)
.

The unique fixed point SS∗ of the map fs (S(nT+)) is

SS∗ =
Λ

µ

[
1 +

p1

(1 − p1)e−µT − 1

]
.

So the periodic solution of system (4.2) on the interval (nT , (n+ 1)T ] is

S̃(t) =
Λ

µ
+ SS∗e−µ(t−nT) −

Λ

µ
e−µ(t−nT) =

Λ

µ
+
Λ

µ

p1

(1 − p1)e−µT − 1
e−µ(t−nT).

Hence, the disease-free periodic solution of the system (4.1) is Ẽ(t) =
(
0, 0, 0, S̃(t)

)
on every impulsive

interval (nT , (n+ 1)T ],n = 1, 2, . . ..
Next we give the definition of the basic reproduction number by applying the next generation operator

[34, 35]. Define two generation matrices at the disease-free periodic solution, that is,

F̄ =

 νβS̃(t) θβS(t) βS̃(t)
0 0 0
0 0 0

 , V̄ =

 δ+ µ 0 0
−(1 − p)δ γ1 +α+ µ 0

−pδ −α γ2 + d+ µ

 .

Suppose that Y(t, s) is the evolution operator of system dY
dt = −V̄Y(t), t > s, and Y(s, s) = H̄, where H̄ is

a 3× 3 identity matrix. Define the next infection operator L̄,

(L̄Φ)(t) = lim
a→−∞

∫t
a

Y(t, s)F̄(s)Ψ(s)ds, ∀t ∈ (nT , (n+ 1)T ],n = 1, 2, . . . ,Φ ∈ Cω,

where Cω is defined as the ordered Banach space of all T -periodic functions from R to R3, equipped

with the maximum norm ‖ . ‖, and the positive cone C+
ω
4
= {Ψ ∈ Cω : Ψ(t) > 0, t ∈ R}, Ψ is the initial

distribution of infectious individuals. Then the basic reproduction number of system (4.1) can be defined
as the spectral radius of the next infection operator, that is,

R0 = ρ(L̄).

4.1. Global asymptotic stability of the disease-free periodic solution
For system (4.1), we have the following result for the stability of the disease-free periodic solution Ẽ(t).

Theorem 4.1. For system (4.1), there holds,
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(i) R0 = 1 if and only if ρ(ΦF̄−V̄(T)) = 1;
(ii) R0 > 1 if and only if ρ(ΦF̄−V̄(T)) > 1;

(iii) R0 < 1 if and only if ρ(ΦF̄−V̄(T)) < 1.

Here, ΦF̄−V̄(T) is the monodromy matrix of x ′ = (F̄− V̄)x. If R0 < 1, the disease-free periodic solution Ẽ(t) =(
0, 0, 0, S̃(t)

)
is locally stable; if R0 > 1, the disease-free periodic solution is unstable.

Proof. The proof of (i)-(iii) can refer to Ref. [33]. Apply Taylor expansion for system (4.1) at the disease-free
periodic solution and omit the higher-order terms, we can obtain the following linear system

X ′(t) =

(
F̄− V̄ 03×1
� −µ

)
X(t), t 6= nT , X(nT+) =

(
H̄ 03×1

01×3 1 − p

)
X(t), t = nT , (4.3)

where � = (−νβS̃(t),−θβS̃(t),−βS̃(t)). The monodromy matrix of system (4.3) is(
H̄ 03×1

01×3 1 − p

)(
ΦF̄−V̄(T) 0
∗∗ e−µT

)
,

where ** is a non-zero vector, 0i×j is a i× j zero matrix, i, j = 1, 3. Then the Floquet multiplier of the
impulse system (4.3) is the maximum of the spectral radius of ρ(ΦF̄−V̄(T)) and (1 − p)e−µT < 1. Hence,
if ρ(ΦF̄−V̄(T)) < 1, the disease-free periodic solution is locally stable; otherwise, it is unstable.

Lemma 4.2. Let κ = 1
T ln ρ(ΦB(.)(T)). Then there exists a positive, T -periodic function v(t) such that eκtv(t) is

a solution of ẋ = B(t)x,B(t) = B(t+ T), x : R→ Rn,B(t) is an n×n matrix.

Theorem 4.3. If R0 < 1, the disease-free periodic solution Ẽ =
(
0, 0, 0, S̃(t)

)
of system (4.1) is globally asymptoti-

cally stable.

Proof. The local stability of the disease-free periodic solution follows from Theorem 4.1. Next we show
that Ẽ is globally attractive.

By the uniform and ultimate boundedness of system (2.1) and the non-negativity of the equations,
there exists a time t1 and a sufficiently small positive number ε1, such that when t > t1, S(t) 6 Λ

µ + ε1
holds. From the first three equations of system (4.1), when t > t1, we have

E ′(t) 6 β(Λµ + ε1)(I+ θA+ νE) − (δ+ µ)E,
A ′(t) = (1 − p)δE− (γ1 +α+ µ)A,
I ′(t) = pδE+αA− (γ2 + d+ µ)I.

(4.4)

Denote z(t) = (E(t),A(t), I(t))T , consider the following comparison system

z ′(t) =
(
F̄− V̄ +M(ε1)

)
z(t), (4.5)

where

M(ε1) =

 νβε1 θβε1 βε1
0 0 0
0 0 0

 .

By Lemma 4.2, there exists a positive function v(t) = (v1(t), v2(t), v3(t))
T with T as the period such that

z(t) = eκ1tv(t) is a solution of system (4.5), where κ1 = 1
T ln ρ(ΦF̄−V̄+M(ε1)

(T)). Since ε1 is small enough
and ρ(ΦF̄−V̄+M(ε1)

(T)) is continuous with respect to ε1, so that ρ(ΦF̄−V̄+M(ε1)
(T) < 1, that is κ1 < 0. So

when t→∞, z(t)→ 0, for initial value (E(t1),A(t1), I(t1))
T of system (4.4), there exists a sufficiently large

z∗ such that (E(t1),A(t1), I(t1))
T 6 z∗(v1(0), v2(0), v3(0))T . The comparison theorem then indicates that

(E(t),A(t), I(t))T 6 z∗eκ1(t−t1)(v1(t− t1), v2(t− t1), v3(t− t1))
T , t > t1,

when t→∞, E(t)→ 0, A(t)→ 0, I(t)→ 0. The Theorem is proved.

As is shown in Fig. 3, if R0 < 1, then the disease-free periodic solution Ẽ is globally asymptotically
stable.
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Figure 3: The disease-free periodic solution Ẽ is globally asymptotically stable. R0 = 0.837. T = 14; p1 = 0.01; Λ = 30000; δ = 0.2;
ν = 0.032; θ = 0.045; µ = 0.0095; p = 0.69; γ1 = 0.1292; α = 0.1; γ2 = 0.0978; d = 0.008; and β = 0.00000002.

4.2. Persistence of system (4.1)

Denote
X = R4

+, X0 = {(E,A, I,S) ∈ X : S > 0}, ∂X
4
= X\X0.

Define Poincaré map P : R4
+ → R4

+, ∀x0 ∈ X,P(x0) = u(T , x0), u(t, x0) is the unique solution of system
(4.1) and satisfies u(0, x0) = x0. It is easy to verify that Pm(E0,A0, I0,S0) = u

(
mT ,E0,A0, I0,S0)

)
, ∀m > 0.

Poincaré map P has a unique fixed point EE∗ = (0, 0, 0, S̃(0)) in X. We first give the following lemma.

Lemma 4.4. If R0 > 1, there exists a positive constant δ0 > 0, such that for all x0 = (E0,A0, I0,S0) ∈ X0,
‖x0 − EE∗‖ 6 δ0, we have

lim sup
m→∞ d(Pm(x0),EE∗) > δ0. (4.6)

Proof. By the continuity of the solutions with respect to the initial values, for any ε1 > 0, there exists a
δ0 > 0 such that for all x0 ∈ X0 with ‖x0 − EE∗‖ 6 δ0, there holds

‖u(t, x0) − u(t,EE∗)‖ 6 ε1, ∀t ∈ [0, T ].

Suppose Eq. (4.6) is not satisfied, then for some x0 ∈ X0,

lim sup
m→∞ d(Pm(x0),EE∗) < δ0.

Without loss of generality, suppose d(Pm(x0),EE∗) < δ0, ∀m > 0. For any t > 0, let t = mT + t ′, where
t ′ ∈ [0, T ] and m = [ tT ] is the greatest integer less than or equal to t

T . Hence, we get

‖u(t, x0) − u(t,EE∗)‖ = ‖u(t ′,Pm(x0)) − u(t ′,EE∗)‖ < ε1, ∀t > 0.
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It follows that 0 6 E(t) 6 ε1, 0 6 A(t) 6 ε1, and 0 6 I(t) 6 ε1. Then by the fourth equation of system
(4.1), we get {

S ′(t) > Λ−βS(1 + θ+ ν)ε1 − µS,
S(nT+) = (1 − p1)S(nT).

Consider an auxiliary system {
S ′(t) = Λ−βS(1 + θ+ ν)ε1 − µS,
S(nT+) = (1 − p1)S(nT).

(4.7)

System (4.7) has a globally asymptotically stable solution

Ŝ(t, ε1) =
Λ

βε1(1 + θ+ ν) + µ
+

Λ

βε1(1 + θ+ ν) + µ

p1

(1 − p1)e−(βε1(1+θ+ν)+µ)T − 1
e−(βε1(1+θ+ν)+µ)(t−nT).

For Ŝ(t, ε1) → S̃(t) as ε1 → 0, hence, for any η > 0, there exists a ε2 > 0 and a time t2, such that when
ε1 < ε2 and t > t2, we have Ŝ(t, ε1) > S̃(t) − η. By the comparison theorem, there exists a time t3 > t2
such that S(t) > Ŝ(t, ε1) > S̃(t) − η, t > t3. Now, for the first three equations of system (4.1), when t > t3,
there holds 

E ′(t) > β(S̃(t) − η)(I+ θA+ νE) − (δ+ µ)E,
A ′(t) = (1 − p)δE− (γ1 +α+ µ)A,
I ′(t) = pδE+αA− (γ2 + d+ µ)I.

(4.8)

Consider the comparison system of system (4.8)
Ê ′(t) = β(S̃(t) − η)(I+ θA+ νE) − (δ+ µ)E,
Â ′(t) = (1 − p)δE− (γ1 +α+ µ)A,
Î ′(t) = pδE+αA− (γ2 + d+ µ)I.

(4.9)

By Lemma 4.2, there exists a positive T -periodic function p(t) = (p1(t),p2(t),p3(t)) such that eκ2tp(t) is a
solution of system (4.9), where κ2 = 1

T ln ρ(ΦF̄(η)−V̄(T)). Since R0 > 1, choose a sufficiently small η such
that ρ(ΦF̄(η)−V̄(T)) > 1, that is κ2 > 0. Let t = n̄T > t3, where n̄ is a positive integer, thus

(
Ê(n̄T), Â(n̄T), Î(n̄T)

)T
= eκ2(n̄T−t3) (p1(n̄T − t3),p2(n̄T − t3),p3(n̄T − t3))

T → (∞,∞,∞)T , n̄→∞.

For any initial value (E(t3),A(t3), I(t3))
T of system (4.8), there exists a sufficiently small positive z∗ such

that (E(t3),A(t3), I(t3))
T > z∗(p1(0),p2(0),p3(0))T . According to the comparison theorem, when t > t3,

(E(t),A(t), I(t))T > z∗eκ2(t−t3)
(
Ê(t− t3), Â(t− t3), Î(t− t3)

)T
.

Hence
lim
t→∞E(t) =∞, lim

t→∞A(t) =∞, lim
t→∞ I(t) =∞,

which contradicts with the boundedness of the solutions, thus the lemma is established.

Theorem 4.5. If R0 > 1, there is a positive constant ε > 0, for all initial values (E0,A0, I0,S0) ∈ R4
+, the solutions

of system (4.1) satisfy lim
t→∞ (E(t),A(t), I(t),S(t)) > (ε, ε, ε, ε), that is, system (4.1) is uniformly persistent, and

there exists at least one positive periodic solution.

For the convenience of description, we present the following persistence theory, [36, Theorem 1.3.1].

Lemma 4.6. Assume that

(C1) P(X0) ⊂ X0 and P has a global attractor AT ;
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(C2) the maximal compact invariant setA∂ = AT ∩M∂ of P in ∂X0, possibly empty, admits a Morse decomposition
{M1, . . . ,Mk} with the following properties:
(a) Mi is isolated in X;
(b) Ws(Mi)∩X0 = ∅ for each 1 6 i 6 k.

Then there exists δ > 0 such that for any compact internally chain transitive set LL with LL *Mi for all 1 6 i 6 k,
we have infx∈LL d(x,∂X0) > δ, that is to say, P : X→ X is uniformly persistent with respect to (X0,∂X0).

Proof of Theorem 4.5. Now we prove that P is uniformly persistent with respect to (X0,∂X0). It can be seen
from system (4.1) that both X and X0 are positively invariant and ∂X0 is a relatively closed set in X. By the
ultimate and uniform boundedness of the solutions of system (4.1), the Poincaré map P admits a global
attractor [34, 35]. Let

M∂ = {(E0,A0, I0,S0) ∈ ∂X0 : Pm((E0,A0, I0,S0)) ∈ ∂X0,∀m > 0}.

And next we prove that
M∂ = {(0, 0, 0,S) : S > 0}. (4.10)

Suppose (E0,A0, I0,S0) ∈ ∂X0\{(0, 0, 0,S) : S > 0}. Without loss of generality, take I0 = 0,E0A0 6= 0. By the
third equation of system (4.1), we have

I ′(t) = pδE0 +αA0 > 0.

For the continuity of the solution, when t > 0 is sufficiently small, (E,A, I,S) /∈ ∂X0, that is, (E,A, I,S) /∈
M∂. The inverse proposition can show that formula (4.10) holds.
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Figure 4: The disease is uniformly persistent if R0 > 1. R0 = 2.38. T = 14; p1 = 0.01; Λ = 30000; δ = 0.2; ν = 0.032; θ = 0.045;
µ = 0.0095; p = 0.69; γ1 = 0.1292; α = 0.1; γ2 = 0.0978; d = 0.008; and β = 0.0000002.

On the other hand, P has only one fixed point EE∗ = (0, 0, 0, S̃(0)) in M∂. By Lemma 4.4, the invariant
set EE∗ is isolated, and Ws(EE∗) ∩ X0 = ∅. The orbits in M∂ all converge to EE∗, and EE∗ is acyclic in
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M∂. According to the conclusion in [1–4, 23–25, 36], P is uniformly persistent with respect to (X0,∂X0),
so that the solution of system (4.1) is uniformly persistent with respect to (X0,∂X0). Theorem 1.3.6 in [36]
further states that P has a fixed point x∗ ∈ X0, so that the solution of system (4.1) passing through x∗ is a
non-trivial periodic solution and E(t) > 0,A(t) > 0, I(t) > 0. The theorem is proved.

As is shown in Fig. 4, if R0 > 1, the system (4.1) is uniformly persistent.

5. Conclusion

Based on the two key features of COVID-19 pandemic, that is, the infectiveness of the incubation
period and the infected showing no symptoms, we proposed a SEAIR epidemic model in this paper.
By applying an algebraic approach, we could express the derivative of the Lyapunov function as sums of
mk

(
nk− xk,1 − xk,2 − · · ·− xk,nk

)
with

∏nk
i=1 xk,i = 1, hence, due to the property that the arithmetic mean

is greater than or equal to the geometric mean, we could obtain the derivative is negative. What follows
is the disease free equilibrium is globally asymptotically stable if R0 < 1, while the endemic equilibrium
is globally asymptotically stable if R0 > 1. As far as we know, few models related to COVID-19 give
the global dynamics of the disease. The Lyapunov function method presented in our model could be
extended to more general models with COVID-19.

We further considered pulse vaccination for COVID-19 and established an impulsive system. We de-
fined the basic reproduction number as the spectral radius of the next infection operator, and proved that
if the basic reproduction number is smaller than 1, the disease-free periodic solution is globally asymp-
totically stable. Meanwhile, we obtained the uniform persistence of the disease if the basic reproduction
number is larger than one by applying the persistent theory.
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