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Abstract
In this paper, we develop controllability findings for impulsive neutral stochastic delay partial integrodifferential equations

in Hilbert spaces driven by Rosenblatt process and Lévy noise. A novel set of adequate requirements is obtained by utilizing a
fixed point method without imposing a stringent compactness constraint on the semigroup. The observed results represent a
generalization and continuation of previous findings on this topic. Finally, an example is given to demonstrate how the acquired
findings may be used.

Keywords: Stochastic functional integrodifferential equations, resolvent operator, rosenblatt process, Lévy noise, controllability.
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1. Introduction

Neutral integrodifferential equations have been the subject of extensive study by several authors over
the last many years (see[7, 12, 16, 17, 22, 23, 28, 52] and references therein). Integrodifferential equa-
tions of the neutral type are used to represent a wide variety of physical processes that occur in fluid
dynamics, electronics, chemical kinetics, and other domains. As a result of their inherent properties,
neutral differential equations can be found naturally in the mathematical modeling of a wide range of
real phenomena in fields as diverse as mechanics, electronics, control theory, engineering, economics, and
statistics. The heat equation developed by Lunardi in [35] and the one used to perform a quantitative
assessment of unemployment, wage bills, and income policies in [9] are both good instances of this type
of equation. Chukwu [9], provides a number of excellent examples, most of them related to economics.
For deterministic neutral functional differential equations, Hale and Mayer [20] were the first to examine
them.

Stochastic differential equations have been extensively studied as a mathematical model for describing
the dynamical behavior of a real-world phenomenon. The inclusion of environmental disturbances and
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time delay is critical when constructing realistic models in the domains of engineering, biology, and
other sciences. In recent years, there has been a significant amount of interest in the examination of
qualitative aspects of neutral stochastic differential equations, such as existence, uniqueness, and stability
(see [11, 21, 30, 42, 45] and references therein). Lakhel [32] has shown the existence and uniqueness
of mild solutions for a class of neutral stochastic functional differential evolution equations driven by a
Rosenblatt process with changing time delays using a fixed point theorem.

The underlying notions in current mathematical theory known as controllability play a significant
role both in deterministic and stochastic control problems, such as stabilization of unstable systems by
feedback control. In recent years, the controllability problems for various linear and nonlinear deter-
ministic and stochastic dynamical systems have been studied by employing diverse methodologies (see
for example [4, 13, 23, 28, 39, 40, 43, 47, 54, 55] and the reference therein). For solving nonlinear prob-
lems (differential equations, stochastic differential equations, integrodifferential equations, and . . . ), it is
generally recognized that fixed point theory is a valuable tool. Several scholars have contributed to the
development of this theory by solving stochastic differential equations across multiple fixed point the-
orems. However, research on the controllability of impulsive neutral stochastic PDEs with delays and
fractional Brownian motion (fBm) is scarce. Ahmed examined approximate controllability of impulsive
neutral stochastic functional differential equations with finite delay and fBm in Hilbert space in [2]. Cui
and Yan [10] investigated controllability for fBm-driven neutral stochastic evolution equations with the
Hurst parameter. Controllability of impulsive neutral stochastic functional differential equations with
infinite delay driven by fBm in a real separable Hilbert space was studied by Boudaoui and Lakhel [5].
Chen [8] also addressed approximation control liability for semilinear stochastic equations driven by fBm
using the Banach fixed point theorem.

Furthermore, stochastic functional differential equations with Poisson jumps have been increasingly
popular in the modeling of phenomena that arise in a range of domains such as finance, economics,
medicine, biology, and other related fields. In real life, it is usual for a stochastic system to transition
from a normal state or a good state to a bad state, with the strength of the system being random. It
is then obvious and required to incorporate a jump element in the stochastic differential equations. As
a result, when analyzing the controllability of stochastic differential equations, it is crucial to evaluate
the implications of Poisson leaps. We are pleased by the vast number of results on the controllability
of stochastic differential equations with Poisson jumps that have recently been reported in the literature.
So far, these themes have garnered a significant amount of attention, and there are a wealth of materials
available on them. Lakhel et al. [33] showed the existence, uniqueness, and asymptotic behavior of mild
solutions for a family of neutral functional stochastic differential equations with fBm and Poisson jumps.
Huan and Agarwal [25] found attractive and quasi-invariant sets of the mild solution for impulsive neutral
stochastic PDEs driven by Levy noise. Sakthivel and Ren [56], addressed the complete controllability of
stochastic evolution equations with jumps in a separable Hilbert space, while in, Ren et al. [53] studied
the approximate controllability of stochastic differential systems driven by Teugels martingales coupled
with a Levy process. Huan and Gao [26] have expanded the conclusions of the study [24] for a class of
nonlocal second-order impulsive neutral stochastic integrodifferential equations with indefinite delay and
Poisson jumps. For further details concerning the stochastic PDEs with Poisson jumps, one can check the
recent monograph [48] and the references therein.

In this paper, we consider the controllability results for impulsive neutral stochastic delay integrodif-
ferential controls systems with delay driven by Rosenblatt process and Lévy noise of the form

d [ϑ (t) − h(t, ϑ(t− δ(t)))] =
[
A [ϑ(t) − h(t, ϑ(t− δ(t)))] +

∫t
0 Υ(t− s) [ϑ(s) − h(s, ϑ(t− δ(s)))]ds

+f (t, ϑ(t− ρ(t))) + Bu(t)
]
dt+

∫
U q (t, ϑ(t− γ(t)), z) η̂(dt,dz)

+σ(t)dZHQ (t), t 6= tk ∈ J := [0, T ],
∆(tk) = ϑ(t

+
k ) − ϑ(t

−
k ) = Ik(t

−
k ), k = 1, 2, . . . ,

ϑ0(t) = ϕ(·) ∈ C0
F0

(
[−r, 0],L2(Ω, H)

)
, t ∈ [−r, 0],

(1.1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup (S(t))t>0 on Hilbert space
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H, Υ(t) a closed linear operator on H with the domain D(A) ⊂ D(Υ), which is independent of t, t > 0.
The functions h, f : R+ ×H→H, σ : [0,∞)→ L0

2(Y, H) and q : R+ ×H×U→H are Borel measurable.
The functions δ, ρ,γ : R+ → [0, r] are continuous. ZHQ is a Rosenblatt process with parameter H ∈ (1/2, 1)
in a real and separable Hilbert space Y. The control function u takes values in L2(J, U), the Hilbert space
of admissible control functions for a separable Hilbert space U and B is a bounded linear operator from U

into H, Ik : H→ H, k = 1, 2, . . . are appropriate functions. Furthermore, let 0 = t0 < t1 < · · · < tk < · · ·
be prefixed points, where ϑ(t+k ) and ϑ(t−k ) represent the right and left limits of ϑ(t) at t = tk, respectively,
and ∆(tk) = ϑ(t+k ) − ϑ(t

−
k ), represents the jump of the function ϑ at time tk with Ik determining the size

of the jump.
However, to the best of authors knowledge the controllability of impulsive neutral stochastic delay

integrodifferential controls systems with delay driven by Rosenblatt process and Lévy noise has not been
investigated yet. Several researchers express the controllability results by the semigroup approach. The
proposed work on the controllability of impulsive neutral stochastic delay integrodifferential controls
systems with delay driven by Rosenblatt process and Lévy noise is new to the literature and more general
result than the existing literature. The following are the most significant contributions and advantages of
this article.

• Nonlinear impulsive neutral stochastic delay integrodifferential controls systems with Rosenblatt
process and Lévy noise are developed.
• The fundamental advantage of the targeted technique is that it is based on resolvent operator theory

in the sense of the Grimmer and Banach fixed point theorem, together with appropriate hypotheses.
• An example is provided in order to validate the theoretical conclusions that have been suggested.

The following is the overall structure of this study. In Section,2, we present a high-level overview of
several fundamental notations, preliminaries, and assumptions. The results in Section 3 are devoted to
the research of the controllability of the system (1.1), as well as their verification. Section 4 presents an
illustration of the idea through the use of an example.

2. Preliminaries

Let (H, ‖ · ‖H, 〈·, ·〉), (K, ‖ · ‖K, 〈·, ·〉) denote two real separable Hilbert spaces, with their vectors norms
and their inner products, respectively. We denote by L(K, H) the set of all linear bounded operators from
K into H, which is equipped with the usual operator norm ‖ · ‖. Let (Ω,F, {Ft}t∈J, P) be a complete
filtered probability space satisfying the usual condition (i.e., it is right continuous and F0 contains all
P null sets). Let L(K, H) represents the space of all bounded linear operators from K to H and Q ∈
L(K, K) represents a non-negative self-adjoint operator. Let L0

2 = L2(Q
1
2 K, H) be the space of all Hilbert-

Schmidt operators from Q
1
2 K into H, where L0

2 is a separable Hilbert space, equipped with the norm

‖ Ψ ‖2
L0

2
=‖ ΨQ

1
2 ‖2= Tr

(
ΨQψ∗

)
. Suppose that p(t), t > 0 is σ-finite stationary Ft-adapted Poisson point

process taking values in a measurable space (U,B(U)).

2.1. Rosenblatt process

In this subsection, we recall some basic concepts on the Rosenblatt process as well as the Wiener
integral with respect to it. Consider (ξn)n∈Z a stationary Gaussian sequence with mean zero and variance
1 such that its correlation function satisfies that R(n) := E(ξ0ξn) = n

2H−2
k L(n), with H ∈ ( 1

2 , 1) and L is a
slowly varying function at infinity. Let g be a function of Hermite rank k, that is, if g admits the following
expansion in Hermite polynomials

g(x) =
∑
j>0

cjHj(x), cj =
1
j!

E(g(ξ0Hj(ξ0))),
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then k = min
{
j|cj 6= 0

}
> 1, where Hj(x) is the Hermite polynomial of degree j given by Hj(x) =

(−1)je
x2
2 dj

dxj
e−

x2
2 . Then, the Non-Central Limit Theorem (see, for example, Dobrushin and Major [15])

says 1
nH

∑[nt]
j=1 g(ξj) converges as n→∞, in the sense of finite dimensional distributions, to the process

ZkH(t) = c(H,k)
∫

Rk

∫t
0

 k∏
j=1

(s− yj)
(− 1

2+
1−H
k )

+

dsdB(y1) · · ·dB(yk), (2.1)

where the above integral is a Wiener-Itô multiple integral of order kwith respect to the standard Brownian
motion (B(y))y∈R and c(H,k) is a positive normalization constant depending only on H and k. The
process (ZkH(t))t>0 is called as the Hermite process and it is H self-similar in the sense that for any c > 0,

(ZkH(ct))
d
= (cHZkH(t)) and it has stationary increments.

The the fractional Brownian motion (which is obtained from (2.1) when k = 1) is the most used
Hermite process for study evolution equations due to its large range of applications. When k = 2 in (2.1),
Taqqu [57] named the process as the Rosenblatt process. The stationarity of increments, self-similarity and
long range dependence (see Tindel et al. [58]) were made that the Rosenblatt process is very important in
practical applications. However, it is noted that Rosenblatt process is not Gaussian. In fact, due to their
proprieties (long range dependence, self-similarity), the fractional Brownian motion process has large
utilization in practical models, for instance in telecommunications and hydrology. So, many researchers
prefer to use fractional Brownian motion than other processes because it is Gaussian and it facilitate
calculations. However in concrete situations when the Gaussianity is not plausible for the model, one can
use the Rosenblatt process. In recent years, there exist many works that investigated on diverse theoretical
aspects of the Rosenblatt process. For example, Leonenko and Ahn [34] gave the rate of convergence to the
Rosenblatt process in the non-central limit theorem and the wavelet-type expansion has been presented
by Abry and Pipiras [1]. Tudor [60] established, the representation as a Wiener-Itô multiple integral with
respect to the Brownian motion on a finite interval and developed the stochastic calculus with respect to it
by using both pathwise type calculus and Malliavin calculus (see also Maejima and Tudor [36]). For more
details for Rosenblatt process, we refer the reader to Maejima and Tudor [37, 38]), Pipiras and Taqqu [49]
and the references therein.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {ZH(t), t ∈ [0, T ]} be a one-
dimensional Rosenblatt process with parameter H ∈ ( 1

2 , 1). According to the work of Tudor [60], the
Rosenblatt process with parameter H > 1

2 can be written as

ZH(t) = d(H)

∫t
0

∫t
0

[∫t
y1∨y2

∂KH
′

∂u
(u,y1)

∂KH
′

∂u
(u,y2)du

]
dB(y1)dB(y2), (2.2)

where KH(t, s) is given by

KH(t, s) = cHs
1
2−H

∫t
s

(u− s)H−3/2uH−1/2du for t > s, with cH =

√
H(2H− 1)

β(2 − 2H,H− 1
2)

,

β(., .) denotes the Beta function, KH(t, s) = 0 when t 6 s, (B(t), t ∈ [0, T ]) is a Brownian motion, H ′ =
H+1

2 and d(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant. The covariance of the Rosenblatt process
{ZH(t), t ∈ [0, T ]} satisfies

E(ZH(t)ZH(s)) =
1
2
(
s2H + t2H − |s− t|2H

)
.

The covariance structure of the Rosenblatt process allows to construct Wiener integral with respect to it.
We refer to Maejima and Tudor [36] for the definition of Wiener integral with respect to general Hermite
processes and to Kruk et al. [31] for a more general context (see also Tudor [60]). Note that

ZH(t) =

∫T
0

∫T
0
I(1[0,t])(y1,y2)dB(y1)dB(y2),
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where the operator I is defined on the set of functions f : [0, T ] → R, which takes its values in the set of
functions g : [0, T ]2 → R2 and is given by

I(f)(y1,y2) = d(H)

∫T
y1∨y2

f(u)
∂KH

′

∂u
(u,y1)

∂KH
′

∂u
(u,y2)du.

Let f be an element of the set E of step functions on [0, T ] of the form

f =

n−1∑
i=0

ai1(ti,ti+1], ti ∈ [0, T ].

Then, it is natural to define its Wiener integral with respect to ZH as∫T
0
f(u)dZH(u) :=

n−1∑
i=0

ai(ZH(ti+1) −ZH(ti)) =

∫T
0

∫T
0
I(f)(y1,y2)dB(y1)dB(y2).

Let H be the set of functions f such that

‖f‖2
H := 2

∫T
0

∫T
0
(I(f)(y1,y2))

2dy1dy2 <∞.

It follows that (see Tudor[60])

‖f‖2
H = H(2H− 1)

∫T
0

∫T
0
f(u)f(v)|u− v|2H−2dudv.

It has been proved in Maejima and Tudor [36] that the mapping f 7−→
∫T

0 f(u)dZH(u) defines an isometry
from E to L2(Ω) and it can be extended continuously to an isometry from H to L2(Ω) because E is dense
in H. We call this extension as the Wiener integral of f ∈ H with respect to ZH. It is noted that the
space H contains not only functions but its elements could be also distributions. Therefore it is suitable
to know subspaces |H| of H : |H| =

{
f : [0, T ]→ R|

∫T
0

∫T
0 |f(u)||f(v)|u− v|2H−2dudv <∞} . The space |H|

is not complete with respect to the norm ‖.‖H but it is a Banach space with respect to the norm

‖f‖2
|H| = H(2H− 1)

∫T
0

∫T
0
|f(u)||f(v)|u− v|2H−2dudv.

As a consequence, we have
L2([0, T ]) ⊂ L1/H([0, T ]) ⊂ |H| ⊂ H.

For any f ∈ L2([0, T ]), we have

‖f‖2
|H| 6 2HT 2H−1

∫T
0
|f(s)|2ds and ‖f‖2

|H| 6 C(H)‖f‖
2
L1/H([0,T ]),

for some constant C(H) > 0. Let C(H) > 0 stands for a positive constant depending only on H and its
value may be different in different appearances. Define the linear operator K∗H from E to L2([0, T ]) by

(K∗Hf)(y1,y2) =

∫T
y1∨y2

f(t)
∂K

∂t
(t,y1,y2)dt,

where K is the kernel of Rosenblatt process in representation (2.2)

K(t,y1,y2) = 1[0,t](y1)1[0,t](y2)

∫t
y1∨y2

∂KH
′

∂u
(u,y1)

∂KH
′

∂u
(u,y2)du.



M. H. M. Hamit, K. H. Bete, B. I. Mahamat, M. A. Diop, J. Nonlinear Sci. Appl., 15 (2022), 152–171 157

Note that (K∗H1[0,t])(y1,y2) = K(t,y1,y2)1[0,t](y1)1[0,t](y2). The operator K∗H is an isometry between E to
L2([0, T ]), which can be extended to the Hilbert space H. In fact, for any s, t ∈ [0, T ] we have〈

K∗H1[0,t],K
∗
H1[0,s]

〉
L2([0,T ]) =

〈
K(t, ., .)1[0,t],K(s, ., .)1[0,s]

〉
L2([0,T ])

=

∫t∧s
0

∫t∧s
0

K(t,y1,y2)K(s,y1,y2)dy1dy2

= H(2H− 1)
∫t

0

∫s
0
|u− v|2H−2dudv

=
〈
1[0,t], 1[0,s]

〉
H

.

Moreover, for f ∈ H, we have

ZH(f) =

∫T
0

∫T
0
(K∗Hf)(y1,y2)dB(y1)dB(y2).

Let {Zn(t)}n∈N be a sequence of two-sided one dimensional Rosenblatt process mutually independent on
(Ω,F, P). We consider a K-valued stochastic process ZQ(t) given by the following series

ZQ(t) =

∞∑
n=1

zn(t)Q
1/2en, t > 0.

Moreover, if Q is a non-negative self-adjoint trace class operator, then this series converges in the space
K, that is, it holds that ZQ(t) ∈ L2(Ω,K). Then, we say that the above ZQ(t) is a K-valued Q-Rosenblatt
process with covariance operator Q. For instance, if {σn}n∈N is a bounded sequence of non-negative real
numbers such thatQen = σnen, by assuming thatQ is a nuclear operator in K, then the stochastic process

ZQ(t) =

∞∑
n=1

zn(t)Q
1/2en =

∞∑
n=1

√
σnzn(t)en, t > 0,

is well-defined as a K-valued Q-Rosenblatt process.

Definition 2.1 (Tudor [60]). Let ϕ : [0, T ] → L0
2 such that

∑∞
n=1 ‖K∗H(ϕQ1/2en)‖L2([0,T ];H) < ∞. Then, its

stochastic integral with respect to the Rosenblatt process ZQ(t) is defined, for t > 0, as follows:∫t
0
ϕ(s)dZQ(s) :=

∞∑
n=1

∫t
0
ϕ(s)Q1/2endzn(s) =

∞∑
n=1

∫t
0

∫t
0
(K∗H(ϕQ

1/2en))(y1,y2)dB(y1)dB(y2). (2.3)

Lemma 2.2. For ψ : [0, T ] → L0
2 such that

∑∞
n=1 ‖ψQ1/2en‖L1/H([0,T ];U) < ∞ holds, and for any a,b ∈ [0, T ]

with b > a, we have

E

∥∥∥∥∥
∫b
a

ψ(s)dZQ(s)

∥∥∥∥∥
2

6 c(H)(b− a)2H−1
∞∑
n=1

∫b
a

‖ψ(s)Q1/2en‖2ds.

If, in addition, ∞∑
n=1

‖ψ(t)Q1/2en‖ is uniformly convergent for t ∈ [0, T ],

then, it holds that

E

∥∥∥∥∥
∫b
a

ψ(s)dZQ(s)

∥∥∥∥∥
2

6 C(H)(b− a)2H−1
∫b
a

‖ψ(s)‖2
L0

2
ds.
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Proof. Let {en}n∈N be the complete orthogonal basis of K introduced above. Applying (2.3) and Hölder
inequality, we have

E

∥∥∥∥∥
∫b
a

ψ(s)dZQ(s)

∥∥∥∥∥
2

= E

∥∥∥∥∥
∞∑
n=1

∫b
a

ψ(s)Q1/2endzn(s)

∥∥∥∥∥
2

=

∞∑
n=1

E

∥∥∥∥∥
∫b
a

ψ(s)Q1/2endzn(s)

∥∥∥∥∥
2

=

∞∑
n=1

H(2H− 1)
∫b
a

∫b
a

‖ψ(s)Q1/2en‖‖ψ(t)Q1/2en‖|t− s|2H−2dsdt

6 C(H)
∞∑
n=1

(∫b
a

‖ψ(s)Q1/2en‖1/Hds

)2H

6 C(H)(b− a)2H−1
∞∑
n=1

∫b
a

‖ψ(s)Q1/2en‖2ds.

Let Y be a separable Hilbert space. Let p(t), t > 0 be σ-finite stationary Ft-adapted Y-valued Poisson
point process. Then for any F ∈ B(Y − {0}), which denotes the Borel σ-field of (Y − {0}), where 0 /∈ F, we
get a counting Poisson random measure η on (Y − {0}):

η ((0, t)× F) :=
∑

0<s6t

1F(p(s)) = #{0 < s 6 t, p(s) ∈ F},

η ((t1, t2]× F) := η ((0, t2)× F) − η ((0, t1)× F) .

We shall denote η (t, F) := η ((0, t)× F). Then, it is known that there exists a σ-finite measure λ such that

E [η(t, F)] = λ(F)t, P [η(t, F) = n] =
exp (−tλ(F)(λ(F)t)n)

n!
.

The measure λ is called the Lévy measure. Then, t > 0, the measure η̂ is defined by

η̂ ([0, t], F) = η ([0, t], F) − tλ(F).

The measure η̂(dt,dy) is called the compensated Poisson random measure and λ(F) is called the compen-
sator.

Let U ∈ B(Y − {0}), where 0 /∈ the closure of U. Let λU denotes the restriction of the measure λ to
U still denoted by λ, such that λ is finite on U. Denote by P2 ([0, t]×U; H) the space of all predictable
mappings κ : [0, t]×U→H for which∫t

0

∫
U

E‖κ(s,y)‖2
Hλ(dy)ds <∞.

We may then define the H-valued stochastic integral∫t
0

∫
U

κ(s,y)η̂(ds,dy) :=
∫t

0

∫
U

κ(s,y)η(ds,dy) −
∫t

0

∫
U

κ(s,y)λ(dy)ds,

where ∫t
0

∫
U

κ(s,y)η(ds,dy) :=
∑

0<s6t

κ(s,p(s))1U(p(s)).
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Furthermore, we can see that
∫t

0

∫
U κ(s,y)η̂(ds,dy) is an H-valued centered square integrable martingale

such that

E
(∥∥∥ ∫t

0

∫
U

κ(s,y)η̂(ds,dy)
∥∥∥2

H

)
=

∫t
0

∫
U

E‖κ(s,y)‖2
Hλ(dy)ds.

We can refer to Protter [50] for a systematic theory about stochastic integrals of this kind.

2.2. Partial integrodifferential equations in Banach spaces
In this section, we recall some fundamental results needed to establish our main results. For the theory

of resolvent operators we refer the reader to [19]. Throughout this paper, X is a Banach space, A and Υ(t)
are closed linear operators on X. Y represents the Banach space D(A) equipped with the graph norm
defined by

|y|Y := |Ay|+ |y| for y ∈ Y.

The notations C([0,+∞); Y),B(Y, X) stand for the space of all continuous functions from [0,+∞) into Y,
the set of all bounded linear operators from Y into X, respectively. We consider the following Cauchy
problem  ϑ′(t) = Aϑ(t) +

∫t
0
Υ(t− s)ϑ(s)ds, for t > 0,

ϑ(0) = ϑ0 ∈ X.
(2.4)

Definition 2.3 ([19]). A resolvent operator for Eq. (2.4) is a bounded linear operator valued function
R(t) ∈ L(X) for t > 0, satisfying the following properties:

(i) R(0) = I and |R(t)| 6Meβt for some constants M and β;
(ii) for each x ∈ X, R(t)x is strongly continuous for t > 0;

(iii) R(t) ∈ L(Y) for t > 0. For ϑ ∈ Y, R(·)ϑ ∈ C1([0,+∞); X)∩C([0,+∞); Y) and

R′(t)ϑ = AR(t)ϑ+
∫t

0
Υ(t− s)R(s)ϑds = R(t)Aϑ+

∫t
0

R(t− s)Υ(s)ϑds for t > 0.

For additional details on resolvent operators, we refer the reader to [19]. To deal with the existence of
a resolvent operator we introduce the following assumptions.

(H1) A is the infinitesimal generator of a strongly continuous semigroup {S(t)}t>0 on X.
(H2) For all t > 0, Υ(t) is a closed linear operator from D(A) to X, and Υ(t) ∈ B(Y, X). For any y ∈ Y, the

map t→ Υ(t)y is bounded, differentiable and the derivative t→ Υ ′(t)y is bounded and uniformly
continuous on R+.

Theorem 2.4 ([19, Theorem 3.7]). Assume that (H1)-(H2) hold. Then there exists a unique resolvent operator for
the Cauchy problem (2.4).

We denote by CT := C
(
[−r, T ],L2(Ω, H)

)
the Banach space of all continuous functions from from

[−r, T ] into L2(Ω, H) such that for all ϑ ∈ CT ,

‖ϑ‖CT := sup
t∈[−r,T ]

(
E‖ϑ(t)‖2) 1

2 ,

and let us consider the set BT = {ϑ ∈ CT : ϑ(s) = ϕ(s), ∀s ∈ [−r, 0]}. The set BT is a closed sub-
set of CT endowed with norm ‖ · ‖CT . Then,CT and BT with the above norm are Banach spaces. Let
C0
F0

(
[−r, 0],L2(Ω, H)

)
denote the family of all bounded F0(Ft)-measurable, C0 := C

(
[−r, 0],L2(Ω, H)

)
-

valued random variables ϕ, satisfying

‖ϕ‖C0 := sup
t∈[−r,0]

(
E‖ϕ(t)‖2) 1

2 <∞.

Now, we give the definition of mild solution for (1.1).
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Definition 2.5. A càdlàg stochastic process ϑ : [−r, T ] → H, 0 6 T < ∞ is called a mild solution of (1.1)
on [−r, T ] if ϑ0(·) = ϕ ∈ C0

F0

(
[−r, 0],L2(Ω, H)

)
on [−r, 0] a.s., and for each t > 0 the following conditions

hold:

(i) ϑ(t) is Ft-adapted;
(ii) ϑ(t) satisfies the following integral equation:

ϑ(t) = R(t) [ϕ(0) − h (0,ϕ(−δ(0)))] + h (t, ϑ(t− δ(t))) +
∫t

0
R(t− s)f (s, ϑ(s− ρ(s)))ds

+

∫t
0

R(t− s)BU(s)ds+

∫t
0

∫
U

R(t− s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz)

+

∫t
0

R(t− s)σ(s)dZHQ (s) +
∑

0<tk<t

R(t− tk)Ik(ϑ(t−k )), P, a.s.

Definition 2.6. The stochastic integrodifferential equations (1.1) is said to be controllable on the interval
[−r, T ], if for every initial stochastic process ϑ(·) = ϕ defined on [−r, 0], there exists a stochastic control
u ∈ L2(J, U) which is adapted to the filtration {Ft}t∈J such that the solution ϑ(·) of the system (1.1)
satisfies ϑ(T) = ϑ1, where ϑ1 and T are preassigned the terminal state and time, respectively.

3. Main results

In order to prove the existence and controllability results, one need to assume the following hypotheses
hold.

(H3) The resolvent operator associated with equation (2.4) is exponentially stable. That is: there exit some
constants µ0 > 0, M̃ > 0, such that

‖R(t)‖ 6 M̃e−µ0t.

(H4) The function f : J×H→H satisfies : there exist positive constants Ch > 0 and Mh > 0 such that for
all t > 0 and x,y ∈H

‖h(t, x) − h(t,y)‖ 6 Ch‖x− y‖, and ‖h(t, x)‖2 6Mh
(
1 + ‖x‖2) .

(H5) For all t > 0, x,y ∈ H, z ∈ U, the functions f, q satisfy: there exist constants Cf > 0, Cq > 0, Mf >

0, Mq > 0 such that

‖f(t, x) − f(t,y)‖ 6 Cf‖x− y‖ , ‖f(t, x)‖2 6Mf
(
1 + ‖x‖2) ,

and ∫
U

‖q(t, x, z) − q(t,y, z)‖2ν(dz) 6 C2
q‖x− y‖2,

∫
U

‖q(t,y, z)‖2ν(dz) 6Mq
(
1 + ‖y‖2) .

(H6) The functions Ik ∈ C(H, H), k = 1, 2 . . . , satisfy the following conditions: there exist some positive
constants CIk , MIk such that for all x, y ∈H,

‖Ik(x) − Ik(y)‖ 6 CIk‖x− y‖, ‖Ik(x)‖2 6 dk
(
1 + ‖x‖2) ,

∞∑
k=1

CIk <∞,
∞∑
k=1

dk <∞.

(H7) The function h is continuous in the quadratic mean sense: for all ϑ ∈ C
(
J,L2(Ω, H)

)
,

lim
t→s

E‖h(t, ϑ(t)) − h(s, ϑ(s))‖2 = 0.
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(H8) The function σ : [0,∞)→ L0
2(Y, H) satisfies the following condition:∫t

0
eµ0s‖σ(s)‖2

L0
2
ds <∞, ∀ t > 0.

(H9) B : U→H is bounded linear operator and the operator Γ : L2(J, U)→ L2(Ω, H) defined by

Γu =

∫b
0

R(t− s)Bu(s)ds,

has an inverse operator Γ−1 which takes values in L2(J, U) \ KerΓ , where the kernel space of Γ is
defined by Ker Γ = {x ∈ L2(J, U) : Γx = 0} (see [51, 59]) and there exist two positive constants MB

and MΓ such that
‖B‖2 6MB, ‖Γ−1‖2 6MΓ .

Theorem 3.1. If hypotheses (H1)-(H9) hold and ϑ0 ∈ H, then, the impulsive stochastic integrodifferential system
(1.1) is controllable on [−r, T ] provided that

C2
h + M̃

2

(
+∞∑
k=1

CIk

)2

<
1
5

. (3.1)

Proof. Using the hypothesis (H9), we define the control u(·) for an arbitrary ϑ(·) by

u(t) = Γ−1
{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))] − h (T , ϑ(T − δ(T))) −

∫T
0

R(T − s)f (s, ϑ(s− ρ(s)))ds

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

−
∑

0<tk<T

R(T − tk)Ik(ϑ(t−k ))
}
(t).

We transform (1.1) into a fixed point problem. By using the above control, we show that the operator
Ψ : BT → BT defined by (Ψϑ) (t) = ϕ(t), t ∈ [−r, 0] and ∀t ∈ J,

(Ψϑ) (t) = R(t) [ϕ(0) − h (0,ϕ(−δ(0)))] + h (t, ϑ(t− δ(t))) +
∫t

0
R(t− s)f (s, ϑ(s− ρ(s)))ds

+

∫t
0

∫
U

R(t− s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) +
∫t

0
R(t− s)σ(s)dZHQ (s)

+
∑

0<tk<t

R(t− tk)Ik(ϑ(t−k )) +
∫t

0
R(t− u)BΓ−1

{
ϑ1 − R(b) [ϕ(0) − h (0,ϕ(−δ(0)))] (3.2)

− h (b, ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

}
(u)du.

has a fixed point, which is then a mild solution for the stochastic impulsive integrodifferential system
(1.1). Clearly, Ψϑ(T) = ϑ1, which implies that the stochastic control u steers the system from the initial
state ϕ to ϑ1 in time b, provided we can find a fixed point of the operator Ψ which means that the system
is controllable on [−r, T ]. The proof is given in the following two steps.
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Step 1. Ψ is well defined. Let ϑ ∈ BT and t ∈ J, we are going to show that each function Ψ(ϑ)(·) is
continuous on J in the L2(Ω, H)-sense. Let t ∈ (0, T) and |ε| be sufficiently small. Then for any fixed
ϑ ∈ BT , we have

E‖ (Ψϑ) (t+ ε) − (Ψϑ) (t)‖2
BT

6 7E‖ [R(t+ ε) − R(t)] [ϕ(0) − h (0,ϕ(−δ(0)))] ‖2 + 7E‖h (t+ ε, ϑ(t+ ε− δ(t+ ε))) − h (t, ϑ(t− δ(t))) ‖2

+ 7E
∥∥∥ ∫t+ε

0
R(t+ ε− s)f (s, ϑ(s− ρ(s)))ds−

∫t
0

R(t− s)f (s, ϑ(s− ρ(s)))ds
∥∥∥2

+ 7E
∥∥∥ ∫t+ε

0

∫
U

R(t+ ε− s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫t

0

∫
U

R(t− s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz)
∥∥∥2

+ 7E
∥∥∥ ∫t+ε

0
R(t+ ε− s)σ(s)dZHQ (s) −

∫t
0

R(t− s)σ(s)dZHQ (s)
∥∥∥2

+ 7E
∥∥∥ ∑

0<tk<T

[R(t+ ε− tk) − R(t− tk)] Ik(ϑ(t−k ))
∥∥∥2

+ 7E
∥∥∥ ∫t+ε

0
R(t+ ε− u)BΓ−1

{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))] (3.3)

− h (T , ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

}
(u)du

−

∫t
0

R(t− u)BΓ−1
{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))]

− h (T , ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

}
(u)du

∥∥∥2

:= 7
7∑
i=1

Ji(ε).

Strong’s continuity of R(t) permits us to deduce

lim
ε→0

[R(t+ ε) − R(t)] [ϕ(0) − h (0,ϕ(−δ(0)))] = 0.

One can infer from Definition 2.3 (i) that

‖ [R(t+ ε) − R(t)] [ϕ(0) − h (0,ϕ(−δ(0)))] ‖2

6 2M2
[
e−2µ0(t+ε) + e−2µ0t

]
‖ϕ(0) − h (0,ϕ(−δ(0))) ‖2 ∈ L2(Ω).

As a result, the Lebesgue dominated theorem implies that

lim
ε→0

J1(ε) = 0. (3.4)

On the basis of (H7), we reach the conclusion that

lim
ε→0

E‖h (t+ ε, ϑ(t+ ε− δ(t+ ε))) − h (t, ϑ(t− δ(t))) ‖2 = 0. (3.5)
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Thus
lim
ε→0

J2(ε) = 0. (3.6)

Consider the case of J3(ε). Without loss of generality, we suppose that ε > 0 (the case ε < 0 is similar).
We have

J3(ε) 6 E
∥∥∥ ∫t+ε

0
R(t+ ε− s)f (s, ϑ(s− ρ(s)))ds−

∫t
0

R(t− s)f (s, ϑ(s− ρ(s)))ds
∥∥∥2

6 2E
∥∥∥ ∫t

0
[R(t+ ε− s) − R(t− s)] f (s, ϑ(s− ρ(s)))ds

∥∥∥2
+ 2E

∥∥∥ ∫t+ε
t

R(t+ ε− s)f (s, ϑ(s− ρ(s)))ds
∥∥∥2

:= 2J31(ε) + 2J32(ε).

When we apply the Hölder inequality on J31(ε), we obtain

J31(ε) 6 tE
∫t

0
‖ [R(t+ ε− s) − R(t− s)] f (s, ϑ(s− ρ(s))) ‖2ds.

Using Definition 2.3 (ii), for each s ∈ [0, t], we have

lim
ε→0

[R(t+ ε− s) − R(t− s)] f (s, ϑ(s− ρ(s))) = 0.

In light of assumption (H5) and Definition 2.3 (i), we can conclude that

‖ [R(t+ ε− s) − R(t− s)] f (s, ϑ(s− ρ(s))) ‖2

6 2M2
[
e−2µ0(t+ε−s) + e−2µ0(t−s)

]
‖f (s, ϑ(s− ρ(s))) ‖2 ∈ L2([0, t]×Ω).

In this case, too, the Lebesgue dominated convergence theorem implies

lim
ε→0

J31(ε) = 0. (3.7)

Furthermore, using the Hölder inequality and assumptions (H3), (H5), we can derive

J32(ε) 6
∫t+ε
t

‖R(t+ ε− s)‖2dsE
∫t+ε
t

‖f (s, ϑ(s− ρ(s))) ‖2ds

6 M̃2 (2µ0)
−1Mf

[
1 − e−2µ0ε

] ∫t+ε
t

(
1 + E‖ϑ(s− ρ(s))‖2)dsε→0

−→ 0 .

Thus, we obtain
lim
ε→0

J3(ε) = 0. (3.8)

For the term J4(ε), we have by assumption (H3):

J4(ε) 6 2E
∥∥∥ ∫t

0

∫
U

[R(t+ ε− s) − R(t− s)]q (s, ϑ(s− γ(s)), z) η̂(ds,dz)
∥∥∥2

+ 2E
∥∥∥ ∫t+ε
t

∫
U

R(t+ ε− s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz)
∥∥∥2

6 2
∫t

0

∫
U

E
∥∥∥ [R(t+ ε− s) − R(t− s)]q (s, ϑ(s− γ(s)), z) ‖2λ(dz)ds

+ 2M̃2
∫t+ε
t

∫
U

e−µ0(t+ε−s)(‖q (s, ϑ(s− γ(s)), z) ‖2λ(dz)ds

:= 2J41(ε) + 2J42(ε).
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By (H3), the strong continuity of R(t) and Lebesgue dominated convergence theorem, we get lim
ε→0

J41(ε) =

0. Therefore
lim
ε→0

J4(ε) = 0. (3.9)

For the term J5(ε), we have

J5(ε) 6 2E
∥∥∥ ∫t

0
[R(t+ ε− s) − R(t− s)]σ(s)dZHQ (s)

∥∥∥2
+ 2E

∥∥∥ ∫t+ε
t

R(t+ ε− s)σ(s)dZHQ (s)
∥∥∥2

:= 2J51(ε) + 2J52(ε).

Lemma 2.2 implies that

J51(ε) 6 C(H)T
2H−1

∫t
0

∥∥ [R(t+ ε− s) − R(t− s)]σ(s)
∥∥2
L0

2
ds.

Based on strong continuity of R(t), for each s ∈ [0, t] the following limit holds:

lim
ε→0

∥∥∥ [R(t+ ε− s) − R(t− s)]σ(s)
∥∥∥2

L0
2

= 0.

By (H3) and Lebesgue dominated theorem, we have∥∥∥ [R(t+ ε− s) − R(t− s)]σ(s)
∥∥∥2

6 2M2
[
e−2µ0(t+ε−s) + e−2µ0(t−s)

]
‖σ(s)‖2

L0
2
∈ L1(J,ds)

and

lim
ε→0

J51(ε) = 0. (3.10)

Applying Lemma 2.2 to J52(ε) we obtain

J52(ε) 6 2HM2ε2H−1
∫t+ε
t

e−2µ0s‖σ(s)‖2
L0

2
ds
ε→0
−→ 0 .

Thus,
lim
ε→0

J52(ε) = 0. (3.11)

Therefore
lim
ε→0

J5(ε) = 0. (3.12)

Now, we have

J6(ε) 6
∑

0<tk<T

[∥∥∥R(t+ ε− tk) − R(t− tk)
∥∥∥2
]

E
∥∥∥Ik(ϑ(t−k ))∥∥∥2

.

By the assumptions (H1), (H6), and the strong continuity of R(t), one has that

lim
ε→0

J6(ε) = 0. (3.13)

For the estimation of term J7(ε), we have

J7(ε) 6 2E
∥∥∥ ∫t

0
[R(t+ ε− u) − R(t− u)]BΓ−1

{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))]

− h (T , ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))
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−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

}
(u)du

∥∥∥2

+ 2E
∥∥∥ ∫t+ε
t

R(t+ ε− u)BΓ−1
{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))]

− h (T , ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

}
(u)du

∥∥∥2

:= J71(ε) + J72(ε).

Since

lim
ε→0

∥∥∥ [R(t+ ε− u) − R(t− u)]BΓ−1
{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))]

− h (T , ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(b− s)σ(s)dZHQ (s)

}∥∥∥2
= 0

and

∥∥∥ [R(t+ ε− u) − R(t− u)]BΓ−1
{
ϑ1 − R(T) [ϕ(0) − h (0,ϕ(−δ(0)))]

− h (T , ϑ(T − δ(T))) −
∫T

0
R(T − s)f (s, ϑ(s− ρ(s)))ds−

∑
0<tk<T

R(T − tk)Ik(ϑ(t−k ))

−

∫T
0

∫
U

R(T − s)q (s, ϑ(s− γ(s)), z) η̂(ds,dz) −
∫T

0
R(T − s)σ(s)dZHQ (s)

}
(u)
∥∥∥2

6 14M2
(
e−2µ0(t+ε−u) + e−2µ0(t−u)

)
MBMΓ

{
E‖ϑ1‖2 + M̃2e−2µ0TE‖ϕ(0) − h (0,ϕ(−δ(0))) ‖2

+Mh

(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)
+ TM̃2 (2µ0)

−1Mf

(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)

+ M̃2

( ∞∑
k=1

dk

)2(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)
+ TM̃2M2

q (2µ0)
−1

(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)

+ M̃2 (2µ0)
−1 c(H)T 2H−1

∫T
0
‖σ(s)‖2

L0
2
ds

}
∈ L1,

we conclude, by the dominated convergence theorem that

lim
ε→0

J71(ε) = 0. (3.14)
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From the assumptions (H3)-(H9) and applying Lemma 2.2 to J71(ε) we obtain

J72(ε) 6 M̃
2 (2µ0)

−1 [1 − e−2µ0ε
]
MBMΓ

∫t+ε
t

{
E‖ϑ1‖2

+ M̃2e−2µ0TE‖ϕ(0) − h (0,ϕ(−δ(0))) ‖2 +Mh

(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)

+ bM̃2 (2µ0)
−1Mf

(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)
+ M̃2

( ∞∑
k=1

dk

)2(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)

+ TM̃2M2
q (2µ0)

−1

(
1 + sup

s∈[−r,T ]
E‖ϑ(s)‖2

)

+ M̃2 (2µ0)
−1 c(H)T 2H−1

∫b
0
‖σ(s)‖2

L0
2
ds

}
du→ 0 as ε→ 0.

(3.15)

Replacing (3.4)-(3.15) in (3.3), we deduce

lim
ε→0

E‖ (Ψϑ) (t+ ε) − (Ψϑ) (t)‖2 = 0.

Thus, the function t→ (Ψϑ) (t) is continuous on J.

Step 2. In this part of the proof, we will prove that Ψ is a contraction mapping in BT with some T1 < T to
be specified later. Let ϑ,χ ∈ BT1 and t ∈ [0, T ]. We have

E‖ (Ψϑ) (t) − (Ψχ) (t)‖2

6 5E‖h (t, ϑ(t− δ(t))) − h (t,χ(t− δ(t))) ‖2 + 5E
∥∥∥ ∫t

0
R(t− s) [f (s, ϑ(s− ρ(s))) − f (s,χ(s− ρ(s)))]ds

∥∥∥2

+ 5E
∥∥∥ ∫t

0

∫
U

R(t− s) [q (s, ϑ(s− γ(s)), z) − q (s,χ(s− γ(s)), z)] η̂(ds,dz)
∥∥∥2

+ 5E
∥∥∥ ∑

0<tk<T

R(t− tk)
[
Ik(ϑ(t

−
k )) − Ik(χ(t

−
k ))
] ∥∥∥2

+ 5E
∥∥∥ ∫t

0
R(t− u)BΓ−1

{
− [h (T , ϑ(T − δ(T))) − h (T ,χ(T − δ(T)))]

−

∫T
0

R(T − s) [f (s, ϑ(s− ρ(s))) − f (s,χ(s− ρ(s)))]ds−
∑

0<tk<T

R(T − tk)
[
Ik(ϑ(t

−
k )) − Ik(χ(t

−
k ))
]

−

∫T
0

∫
U

R(T − s) [q (s, ϑ(s− γ(s)), z) − q (s,χ(s− γ(s)), z)] η̂(ds,dz)
}
(u)du

∥∥∥2
.

Using (3.2), we have

E‖ (Ψϑ) (t) − (Ψχ) (t)‖2

6 5E‖h (t, ϑ(t− δ(t))) − h (t,χ(t− δ(t))) ‖2 + 5E
∥∥∥ ∫t

0
R(t− s) [f (s, ϑ(s− ρ(s))) − f (s,χ(s− ρ(s)))]ds

∥∥∥2

+ 5E
∥∥∥ ∫t

0

∫
U

R(t− s) [q (s, ϑ(s− γ(s)), z) − q (s,χ(s− γ(s)), z)] η̂(ds,dz)
∥∥∥2

+ 5E
∥∥∥ ∑

0<tk<T

R(t− tk)
[
Ik(ϑ(t

−
k )) − Ik(χ(t

−
k ))
] ∥∥∥2
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+ 5E
∥∥∥ ∫t

0
R(t− u)BΓ−1

{
− [h (T , ϑ(T − δ(T))) − h (T ,χ(T − δ(T)))]

−

∫T
0

R(T − s) [f (s, ϑ(s− ρ(s))) − f (s,χ(s− ρ(s)))]ds−
∑

0<tk<T

R(T − tk)
[
Ik(ϑ(t

−
k )) − Ik(χ(t

−
k ))
]

−

∫T
0

∫
U

R(b− s) [q (s, ϑ(s− γ(s)), z) − q (s,χ(s− γ(s)), z)] η̂(ds,dz)
}
(u)du

∥∥∥2
.

By using Definition 2.3, Hölder inequality and assumptions (H3)-(H7), (H9), we get

E‖ (Ψϑ) (t) − (Ψχ) (t)‖2

6 5C2
h sup
s∈[−r,t]

E‖ϑ(s− δ(s)) − χ(s− δ(s))‖2

+ 5M̃2 (2µ0)
−1 tC2

f sup
s∈[−r,t]

E‖ϑ(s− ρ(s)) − χ(s− ρ(s))‖2 + 5M̃2

( ∞∑
k=1

CIk

)2

sup
s∈[−r,t]

E‖ϑ(s) − χ(s)‖2

+ 5M̃2 (2µ0)
−1 tC2

q sup
s∈[−r,t]

E‖ϑ(s− γ(s)) − χ(s− γ(s))‖2

+ 20 (2µ0)
−1 M̃2 (1 − e−µ0t

)
MBMΓ

{
C2

h sup
s∈[−r,T ]

E‖ϑ(s− δ(s)) − χ(s− δ(s))‖2

+ M̃2 (2µ0)
−1 TC2

f sup
s∈[−r,T ]

E‖ϑ(s− ρ(s)) − χ(s− ρ(s))‖2 + M̃2

( ∞∑
k=1

CIk

)2

sup
s∈[−r,T ]

E‖ϑ(s) − χ(s)‖2

+ M̃2 (2µ0)
−1 TC2

q sup
s∈[−r,T ]

E‖ϑ(s− γ(s)) − χ(s− γ(s))‖2

}
.

Hence, we have

sup
s∈[−r,t]

E‖ (Ψϑ) (s) − (Ψχ) (s)‖2 6 α(t) sup
s∈[−r,t]

E‖ (Ψϑ) (s) − (Ψχ) (s)‖2,

where

α(t) 6 5C2
h + 5M̃2 (2µ0)

−1 tC2
f + 5M̃2

( ∞∑
k=1

CIk

)2

+ 5M̃2 (2µ0)
−1 tC2

q

+ 20 (2µ0)
−1 M̃2 (1 − e−µ0t

)
MBMΓ

{
C2

h + M̃
2 (2µ0)

−1 TC2
f + M̃

2

( ∞∑
k=1

CIk

)2

+ M̃2 (2µ0)
−1 bC2

q

}
.

By inequality (3.1), we have

α(0) = 5C2
h + 5M̃2

( ∞∑
k=1

CIk

)2

< 1.

Then there exists 0 < T1 6 T such that 0 < α(0) < 1 and the operator Ψ is a contraction on BT1 and hence
it has a unique fixed point on [−r, T1], which is a mild solution of system (1.1) on the interval [−r, T1].
By repeating a similar process the solution can be extended to the entire interval [−r,b]. Therefore, the
system (1.1) is controllable on [−r, T ].
The proof is complete.
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4. Example

We consider the following nonlocal stochastic integrodifferential system to illustrate the previous
theoretical results.

d [w(t, ξ) −β1w(t− ρ(t), ξ)] =

[
∂2

ξ2 [w(t, ξ) −β1w(t− ρ(t), ξ)]

+

∫t
0

g(t− s)
∂2

ξ2 [w(s, ξ) −β1w(s− ρ(s), ξ)]ds+β2w(t− δ(t), ξ) + k(ξ)u(t)

]
dt

+

∫
U

β3y (w(t− r(t), ξ)) Ñ(dt,dy) + e−tdZHQ(t), 0 6 ξ 6 π, t 6= tk, t ∈ [0, T ],

∆w(tk, ·)(ξ) = β4

2k
w(t−k , ξ), t = tk, k = 1, 2, . . . ,

ϑ(θ, ·) = ϑ0(θ, ξ) ∈ X = L2([0,π]), ϑ0(·, ξ) ∈ C ([−r, 0], R) , θ ∈ [0,π],

(4.1)

where H ∈ ( 1
2 , 1), ZHQ denotes standard Rosenblatt process defined on a stochastic basis (Ω,F, P), β1, β2,

β3, β4 are positive constants,U = {ν ∈ R : 0 < |ν| 6 c, c > 0}, g : R+ → R+ is continuous functions and
ϕ(θ, ·) ∈ L2[0,π] is measurable and satisfies E‖ϕ‖2 < ∞. Let X = Y = U = L2([0,π]) with the norm ‖.‖.
Define A : D(A) ⊂ X→ X by Ax = x′′ with domain

D(A) = {x(.) ∈ X, x, x′ are absolutely continuous, x′′ ∈ X, x(0) = x(π)}.

The spectrum of A consists of the eigenvalues −n2 for n ∈N, with associated eigenvectors

en :=

√
2
π

sin(nx), (n = 1, 2, 3, . . .).

Furthermore, the set {en : n ∈N} is an orthogonal basis in X. Then

Ax =
∞∑
n=1

n2〈x, en〉en, x ∈ X.

It is well known that A is the infinitesimal generator of a strongly continuous semigroup {T(t)}t>0 on X,
which is compact and is given by

T(t)x =

∞∑
n=1

e−n
2t < x, en > en, x ∈ X.

Let Υ : D(A) ⊂ X→ X be the operator defined by

Υ(t)(z̃) = g(t)Az̃ for t > 0 and z̃ ∈ D(A).

Further, define B ∈ L(R, H) by Bu(t) = k(ξ)u, 0 6 ξ 6 π,u ∈ R,k(ξ) ∈ L2(0,π). Let Γu =

∫T
0
R(T −

s)Bu(s)ds, then we claim that Γ is bounded due to Hölder inequality. Take Ker(Γ) = {u ∈ L2([0, T ], R) :
Γu = 0} as a null space of Γ and let (Ker(Γ))⊥ be its complement in L2([0, T ], R). Also take Γ0 : (Ker(Γ))⊥ →
Range(Γ) is the restriction of Γ to (Ker(Γ))⊥. Γ0 is one-to-one operator. By using the inverse mapping
theorem, we get Γ−1 is bounded. Now, Γ−1 is bounded and have 0 values in L2(J,U) \ Ker(W), that is,
(H9) is satisfied.

Define the operators h, f : [0,∞)×X −→ X, q : [0,∞)×H 7→H, q : [0,∞)×H×H 7→H, Ik : H 7→H

by

h(t,w(t− ρ(t)))(ξ) = β1w(t− ρ(t), ξ), ξ ∈ [0,π],
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f(t,w(t− ρ(t)))(ξ) = β2w(t− ρ(t), ξ), ξ ∈ [0,π],
q(t,φ,y)(ξ) = β3yw(t− r(t), ξ), ξ ∈ [0,π],

Ik(w(tk, ·)(ξ) = β4

2k
w(t−k , ξ), k = 1, 2, . . . , ξ ∈ [0,π].

In order to rewrite system (4.1) in an abstract form in X, we introduce the following notations{
ϑ(t) = w(t, ξ) for t > 0 and ξ ∈ [0,π],
ϕ(t)(τ) = w0(t, ξ) for t ∈ [−r, 0] and ξ ∈ [0,π].

Then equation (4.1) takes the following abstract form
d [ϑ(t) − h(t, ϑ(t− δ(t)))] =

[
A [ϑ(t) − h(t, ϑ(t− δ(t)))] +

∫t
0 Υ(t− s) [ϑ(s) − h(s, ϑ(t− δ(s)))]ds

+f (t, ϑ(t− ρ(t))) + Bu(t)
]
dt+

∫
U q (t, ϑ(t− γ(t)), z) η̂(dt,dz) + σ(t)dZHQ (t), t 6= tk ∈ J := [0, T ],

∆(tk) = ϑ(t
+
k ) − ϑ(t

−
k ) = Ik(t

−
k ), k = 1, 2, . . . ,

ϑ0(t) = ϕ(·) ∈ C0
F0

(
[−r, 0],L2(Ω, H)

)
, t ∈ [−r, 0].

Moreover, if g is bounded and C1 function such that g′ is bounded and uniformly continuous, then (H1)
and (H2) are satisfied, and hence, by Theorem 2.4, Eq. (2.4) has a resolvent operator (R(t))t>0 on X. Using
[14, Lemma 5.2], let µ > δ > 1 and g(t) < exp(−βt), for all t > 0. Then the above resolvent operator
decays exponentially to zero. Specifically, ‖R(t)‖ 6 exp(−at) where a = 1 − 1/δ. It is obvious that all the
assumptions are satisfied with

µ0 = 1 −
1
δ

, M̃ = 1, Ch = β1 Mh = β2
1, Cf = β2 Mf = β

2
2,

Cq =Mq =

∫
U

β2
3y

2λ(dy), CIk =
β4

2k
, dk =

β4

22k .

Thus, by Theorem 3.1, Equation (4.1) is controllable on J = [0, T ] provided

β2
1 +

(
+∞∑
k=1

CIk

)2

<
1
5

.

5. Conclusion

The controllability of impulsive neutral stochastic delay integrodifferential equations driven by Rosen-
blatt process and Lévy noise in Hilbert spaces is investigated in this paper. A novel set of adequate criteria
is generated by employing a fixed point technique without imposing a strict compactness condition on
the resolvent operator. The findings in this paper constitute a generalization and extension of the recent
findings on this topic. An example is offered to demonstrate the theoretical conclusion reached. Further-
more, this result could be extended to investigate non-instantaneous impulsive neutral stochastic delay
integrodifferential equations driven by Rosenblatt process and Lévy noise in Hilbert space.
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