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Abstract
In this paper we begin by presenting a general Leray-Schauder alternative and a topological transversality theorem for

Kakutani (upper semicontinuous maps with nonempty convex compact values) compact weakly inward maps. Then with some
observations and extra assumptions we present a Leray-Schauder alternative and a topological transversality theorem for acyclic
(upper semicontinuous maps with nonempty acyclic compact values) compact strongly inward maps.
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1. Introduction

In the first part of this paper we discuss Kakutani maps, i.e., upper semicontinuous compact maps with
nonempty convex compact values. We begin by defining the notion of essential maps and then the notion
of homotopy. Then we present a simple result which will then generate a very general Leray-Schauder
type result and a topological transversality theorem for Kakutani weakly inward maps. The topological
transversality theorem simply states that if two maps F and G are homotopic then F is essential if and only
if G is essential. The second part of the paper discusses upper semicontinuous compact strongly inward
maps with nonempty acyclic compact values. Again a simple result will generate a Leray-Schauder type
result. However to obtain a topological transversality theorem in this setting some observations and
assumptions need to be considered. We refer the reader to [1, 2, 4, 8–10] for continuation type results in
other settings.

Let E be a Banach space (or more generally a locally convex Hausdorff linear topological space) and
let C be a closed convex subset of E. The set

IC(x) = {x+ λ (y− x) : λ > 0, y ∈ C}

is called the inward set of C at x. A mapping F : C→ 2E (here 2E denotes the family of nonempty subsets
of E) is said to be weakly inward with respect to C if

F(x)∩ IC(x) 6= ∅ on C.
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Recall (see [3]) if C is a closed convex subset of a Banach space then

IC(x) = IC(x) = x+ {λ (y− x) : λ > 1, y ∈ C}.

To establish our results recall the following fixed point result in [3].

Theorem 1.1. Let E be (real) Banach space and C a closed bounded convex subset of E. Suppose F : C → 2E is a
upper semicontinuous compact (or more generally, condensing) map with closed convex values. If F(x)∩ IC(x) 6= ∅
on C, then F has a fixed point in C.

Finally recall [6] a nonempty topological spaces is said to be acyclic if all its reduced C̆ech homology
groups over the rationals are trivial.

2. Topological transversality theorem

Let E = (E, ‖.‖) be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, and
U = U0 ∩C.

Definition 2.1. We say F ∈ WI(U,E) if F : U → K(E) is a upper semicontinuous compact weakly inward
with respect to C (i.e., F(x)∩ IC(x) 6= ∅ on U) map; here U denotes the closure of U in C and K(E) denotes
the family of nonempty convex compact subsets of E.

Definition 2.2. We say F ∈ WI∂U(U,E) if F ∈ WI(U,E) and x /∈ F(x) for x ∈ ∂U; here ∂U denotes the
boundary of U in C.

Now we introduce our main notion, namely essential maps.

Definition 2.3. We say F ∈ WI∂U(U,E) is essential in WI∂U(U,E) if for every map G ∈ WI∂U(U,E) with
F|∂U = G|∂U there exists a x ∈ U with x ∈ G(x).

Remark 2.4. If F is essential in WI∂U(U,E), then there exists a x ∈ U with x ∈ F(x) (take G = F in Definition
2.3).

Next we consider the notion of homotopy.

Definition 2.5. Let Φ, Ψ ∈WI∂U(U,E). We say Φ ∼= Ψ in WI∂U(U,E) if there exists an upper semicontin-
uous, compact map H : U× [0, 1]→ C(E) with Ht : U→ K(E) belonging to WI∂U(U,E) for each t ∈ [0, 1],
H0 = Φ and H1 = Ψ; here C(E) denotes the family of nonempty compact subsets of E and Ht(x) = H(x, t).

Remark 2.6. A standard argument guarantees that ∼= in WI∂U(U,E) is an equivalence relation.

Next we present a result which will, then with a few observations generate a Leray-Schauder alterna-
tive and a topological transversality theorem.

Theorem 2.7. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C
and F ∈WI∂U(U,E). Suppose G ∈WI∂U(U,E) is essential in WI∂U(U,E) and assume the following holds:

for any θ ∈WI∂U(U,E) with θ|∂U = F|∂U we have G ∼= θ in WI∂U(U,E). (2.1)

Then F is essential in WI∂U(U,E).

Proof. Consider any map θ ∈ WI∂U(U,E) with θ|∂U = F|∂U. We must show there exists a x ∈ U with
x ∈ θ(x). Now (2.1) guarantees a upper semicontinuous, compact map H : U × [0, 1] → C(E) with
Ht ∈WI∂U(U,E) for each t ∈ [0, 1] (here Ht(.) = H(., t)), H0 = G and H1 = θ. Let

Ω =
{
x ∈ U : x ∈ H(x, t) for some t ∈ [0, 1]

}
.
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Now Ω 6= ∅ since G is essential in WI∂U(U,E) (see Remark 2.4 with t = 0). Also Ω is closed since
H is upper semicontinuous (in fact Ω is compact since H is compact). Also note Ω ∩ ∂U = ∅ since
Ht ∈ WI∂U(U,E) for each t ∈ [0, 1]. Then there exists a Urysohn continuous map µ : U → [0, 1] with
µ(∂U) = 0 and µ(Ω) = 1. Define the map R : U → K(E) by R(x) = H(x,µ(x)) = Hµ(x)(x) = H ◦ g(x)
where g : U → U× [0, 1] is given by g(x) = (x,µ(x)). Note R is a upper semicontinuous compact map
with R|∂U = G|∂U since if x ∈ ∂U, then R(x) = H(x, 0) = G(x). Next we will show R is weakly inward
with respect to C. First notice for each fixed s ∈ [0, 1] we have Hs(x) ∩ IC(x) 6= ∅ for x ∈ U. Now for a
fixed x ∈ U let µ(x) = s so R(x) = Hµ(x)(x) = Hs(x) and as a result R(x) ∩ IC(x) = Hs(x) ∩ IC(x) 6= ∅,
i.e., R is weakly inward with respect to C. Consequently R ∈ WI∂U(U,E) with R|∂U = G|∂U . Now since
G is essential in WI∂U(U,E), then there exists a x ∈ U with x ∈ R(x), i.e., x ∈ Hµ(x)(x). Thus x ∈ Ω so
µ(x) = 1 and as a result x ∈ H1(x) = θ(x).

We are now in a position to present a very general Leray-Schauder type result.

Theorem 2.8. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C
and F ∈ WI∂U(U,E). Suppose G ∈ WI∂U(U,E) is essential in WI∂U(U,E) and x /∈ t F(x) + (1 − t)G(x) for
x ∈ ∂U and t ∈ (0, 1). Then F is essential in WI∂U(U,E) (in particular F has a fixed point in U).

Proof. Let θ ∈ WI∂U(U,E) with θ|∂U = F|∂U and let H(x, t) = tθ(x) + (1 − t)G(x). Note H : U× [0, 1] →
C(E) (in fact K(E)) is a upper semicontinuous compact map and x /∈ Ht(x) for any x ∈ ∂U and t ∈ [0, 1]
(note if x ∈ ∂U and t ∈ [0, 1], then since θ|∂U = F|∂U we have Ht(x) = t θ(x) + (1 − t)G(x) = t F(x) +
(1 − t)G(x)), H0 = G and H1 = θ. Also for each t ∈ [0, 1] note Ht ∈ WI∂U(U,E) since for x ∈ U we have
θ(x)∩ IC(x) 6= ∅ and G(x)∩ IC(x) 6= ∅ and so since Ht(x) = t θ(x) + (1− t)G(x) we have Ht(x)∩ IC(x) 6= ∅
(note IC(x) is a convex subset of E). Thus G ∼= θ in WI∂U(U,E) so (2.1) holds and our result follows from
Theorem 2.7.

Theorem 2.9. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C
and u0 ∈ U. Then the constant map G : U→ {u0} is essential in WI∂U(U,E).

Proof. Let θ ∈ WI∂U(U,E) with θ|∂U = G|∂U = {u0}. We must show there exists a x ∈ U with x ∈ θ(x).
Now U0 is bounded so we can choose a constant R > 0 with

U0 ⊂ {x ∈ E : ‖x‖ < R} and θ(U) ⊂ {x ∈ E : ‖x‖ < R}.

Let
D = C ∩ {x ∈ E : ‖x‖ < R+ 1}

and consider

J(x) =

{
θ(x), x ∈ U,
{u0}, x ∈ D\U.

Note J : D→ K(E) is a upper semicontinuous compact map. We claim J is weakly inward with respect to
D (i.e., J(x) ∩ ID(x) 6= ∅ on D). If the claim is true, then we are finished since Theorem 1.1 guarantees a
y ∈ D with y ∈ J(y) and note immediately that y ∈ U since u0 ∈ U and thus y ∈ θ(y).

To prove the claim note if x ∈ D\U, then J(x) = {u0} ⊆ ID(x) since u0 ∈ U0 ∩C so u0 ∈ D. Now let
x ∈ U and take y ∈ J(x) = θ(x) with y ∈ IC(x) (recall θ(x)∩ IC(x) 6= ∅). There exists {λn}n∈N with λn > 1
for n ∈ N and {zλn}n∈N ⊆ C with

‖y− [x+ λn(zλn − x)]‖ → 0 as n→∞.

Let vλn = x+ λn(zλn − x). Then vλn → y as n→∞ so vλn ∈ {x ∈ E : ‖x‖ < R+ 1} for n sufficiently large.
Let µn = 1

λn
. Then zλn = (1 − µn) x+ µn vλn so zλn ∈ {x ∈ E : ‖x‖ < R+ 1} for n sufficiently large. In

addition since {zλn}n∈N ⊆ C we have zλn ∈ D for n sufficiently large and ‖y− [x+ λn(zλn − x)]‖ → 0 as
n→∞. Thus y ∈ ID(x) so y ∈ J(x)∩ ID(x).
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Combining Theorems 2.8 and 2.9 gives the following result.

Theorem 2.10. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C,
u0 ∈ U and F ∈ WI∂U(U,E). Suppose x /∈ t F(x) + (1 − t) {u0} for x ∈ ∂U and t ∈ (0, 1). Then F is essential in
WI∂U(U,E) (in particular F has a fixed point in U).

Next we establish the topological transversality theorem and in the proof we use the following:

if Φ, Ψ ∈WI∂U(U,E) with Φ|∂U = Ψ|∂U, then Φ ∼= Ψ in WI∂U(U,E). (2.2)

To see this let H(x, t) = (1 − t)Φ(x) + tΨ(x) and note H : U× [0, 1] → C(E) (in fact K(E)) is a upper
semicontinuous compact map with x /∈ Ht(x) for any x ∈ ∂U and t ∈ (0, 1) (note if x ∈ ∂U and t ∈ (0, 1),
then Ht(x) = (1 − t)Φ(x) + tΨ(x) = Φ(x) since Φ|∂U = Ψ|∂U and note x /∈ Φ(x) since Φ ∈ WI∂U(U,E))
and for each t ∈ [0, 1] note Ht ∈WI∂U(U,E) since for x ∈ Uwe haveΦ(x)∩ IC(x) 6= ∅ and Ψ(x)∩ IC(x) 6= ∅
and so since Ht(x) = (1 − t)Φ(x) + tΨ(x) we have Ht(x)∩ IC(x) 6= ∅ (note IC(x) is a convex subset of E).

Remark 2.11. From (2.2) note in (2.1) since θ ∈WI∂U(U,E) and θ|∂U = F|∂U, then θ ∼= F in WI∂U(U,E).

Now we state and prove the topological transversality theorem.

Theorem 2.12. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C,
F ∈ WI∂U(U,E), G ∈ WI∂U(U,E) and F ∼= G in WI∂U(U,E). Now F is essential in WI∂U(U,E) if and only if
G is essential in WI∂U(U,E).

Proof. Assume G is essential inWI∂U(U,E). We will use Theorem 2.7 to show F is essential inWI∂U(U,E).
Let θ ∈ WI∂U(U,E) with θ|∂U = F|∂U. Now (2.2) guarantees that θ ∼= F in WI∂U(U,E) and this together
with F ∼= G inWI∂U(U,E) implies θ ∼= G inWI∂U(U,E) (recall ∼= inWI∂U(U,E) is an equivalence relation).
Thus (2.1) holds so Theorem 2.7 guarantees that F is essential in WI∂U(U,E). A similar argument shows
if F is essential in WI∂U(U,E), then G is essential in WI∂U(U,E).

Remark 2.13. In the theory above (see Definition 2.1 etc.) we assumed the maps are compact. However
slight adjustments in the above proofs guarantee that one could replace compact maps with α-condensing
maps [3].

Remark 2.14. It is easy to extend the above theory when E is a Banach space is replaced by E is a Fréchet
space (metric d) and here C is a closed convex subset of E and U0 a d-bounded (i.e., there exists a constant
R > 0 with U0 ⊂ {x ∈ E : d(0, x) < R}) open subset of E. In this situation we say F ∈ I(U,E) if F : U→ K(E)
is a upper semicontinuous compact inward with respect to C (i.e., F(x) ∩ IC(x) 6= ∅ on U) map. Also we
have the analogue of Definitions 2.2, 2.3, 2.5, and trivial adjustments in the proofs above will establish the
analogue of Theorems 2.7, 2.8, 2.9, 2.10, and 2.12 (note instead of applying Theorem 1.1 in Theorem 2.9
we will apply Theorem 6 in [7]). We also refer the reader to [1, 9].

Next we will consider acyclic maps instead of Kakutani maps. Let E be a Banach space, C a closed
convex subset of E, U0 a bounded open subset of E, and U = U0 ∩C.

Definition 2.15. We say F ∈ AI(U,E) if F : U→ A(E) is a upper semicontinuous compact strongly inward
with respect to C (i.e., F(x) ⊆ IC(x) on U) map; here A(E) denotes the family of nonempty acyclic compact
subsets of E.

Definition 2.16. We say F ∈ AI∂U(U,E) if F ∈ AI(U,E) and x /∈ F(x) for x ∈ ∂U.

Definition 2.17. We say F ∈ AI∂U(U,E) is essential in AI∂U(U,E) if for every map G ∈ AI∂U(U,E) with
F|∂U = G|∂U there exists a x ∈ U with x ∈ G(x).

Definition 2.18. Let Φ, Ψ ∈ AI∂U(U,E). We say Φ ∼= Ψ in AI∂U(U,E) if there exists an upper semi-
continuous, compact map H : U× [0, 1] → C(E) with Ht : U → A(E) belonging to AI∂U(U,E) for each
t ∈ [0, 1], H0 = Φ, and H1 = Ψ (here Ht(x) = H(x, t) and we note a standard argument guarantees that ∼=
in AI∂U(U,E) is an equivalence relation).
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The same argument as in Theorem 2.7 (with very slight adjustments) guarantees the following result.

Theorem 2.19. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C
and F ∈ AI∂U(U,E). Suppose G ∈ AI∂U(U,E) is essential in AI∂U(U,E) and assume the following holds:

for any θ ∈ AI∂U(U,E) with θ|∂U = F|∂U we have G ∼= θ in AI∂U(U,E). (2.3)

Then F is essential in AI∂U(U,E).

Theorem 2.20. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C,
and 0 ∈ U. Then the zero map G : U→ {0} is essential in AI∂U(U,E).

Proof. Let θ ∈ AI∂U(U,E) with θ|∂U = G|∂U = {0}. There exists a constant R > 0 with

U0 ⊂ {x ∈ E : ‖x‖ < R} and θ(U) ⊂ {x ∈ E : ‖x‖ < R}.

Let
D = C ∩ {x ∈ E : ‖x‖ < R+ 1}

and consider

J(x) =

{
θ(x), x ∈ U,
{0}, x ∈ D\U.

Note J : D → A(E) is a upper semicontinuous compact map and a slight adjustment of the argument in
Theorem 2.9 guarantees that J is strongly inward with respect to D (i.e., J(x) ⊆ ID(x) on D). Now apply
Theorem 2.7 in [1] so there exists a y ∈ Dwith y ∈ J(y) and since 0 ∈ U, then y ∈ U and thus y ∈ θ(y).

Now we present a Leray-Schauder type result.

Theorem 2.21. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open subset of E, U = U0 ∩C,
0 ∈ U, and F ∈ AI∂U(U,E). Suppose x /∈ t F(x) for x ∈ ∂U and t ∈ (0, 1). Then F is essential in AI∂U(U,E) (in
particular F has a fixed point in U).

Proof. Let G be the zero map which is essential in AI∂U(U,E) from Theorem 2.20. Now let θ ∈ AI∂U(U,E)
with θ|∂U = F|∂U and let H(x, t) = t θ(x). Note H : U× [0, 1] → C(E) is a upper semicontinuous compact
map and x /∈ Ht(x) for any x ∈ ∂U and t ∈ [0, 1] (note if x ∈ ∂U and t ∈ [0, 1], then since θ|∂U = F|∂U we
have Ht(x) = t θ(x) = t F(x)), H0 = G, and H1 = θ. Also for each fixed t ∈ [0, 1] note Ht : U→ A(E) (recall
homeomorphic spaces have isomorphic homology groups so Ht is acyclic valued). Also for each t ∈ [0, 1]
note Ht ∈ AI∂U(U,E) since for x ∈ U we have θ(x) ⊆ IC(x) and 0 ∈ IC(x) (recall 0 ∈ U = U0 ∩C) so we
have t θ(x) = t θ(x) + (1− t) 0 ∈ IC(x) since IC(x) is a convex subset of E. Thus θ ∼= {0} = G in AI∂U(U,E)
so (2.3) holds and our result follows from Theorem 2.19.

To obtain a topological transversality theorem for acyclic strongly inward maps we need to add some
extra assumptions. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open convex
subset of E, and U = U0 ∩C. For the remainder of this paper assume

there exists a continuous retraction r from U onto ∂U. (2.4)

Remark 2.22. If E is a normed linear space, C ⊆ E a cone and U0 an open ball in E, then [5] guarantees
that (2.4) is true.

We also assume

for any Φ ∈ AI∂U(U,E) we have Φ(λ r(x) + (1 − λ) x) ⊆ IC(x) on U for any λ ∈ (0, 1]. (2.5)

Now we prove the following:

if G, F ∈ AI∂U(U,E) with G|∂U = F|∂U, then G ∼= F in AI∂U(U,E). (2.6)
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Let F?(x) = F(r(x)) for x ∈ U and note F?(x) = G(r(x)) for x ∈ U since G|∂U = F|∂U. Let

H(x, t) = G(2t r(x) + (1 − 2t) x) for (x, t) ∈ U×
[

0,
1
2

]
.

Note H : U×
[
0, 1

2

]
→ C(E) is a upper semicontinuous compact map and for fixed x ∈ U and t ∈

[
0, 1

2

]
note Ht(x) has acyclic values and also note if x ∈ ∂U and t ∈

[
0, 1

2

]
with x ∈ Ht(x), then x ∈ G(2t r(x) +

(1 − 2t) x) = G(x), a contradiction so as a result x /∈ Ht(x) for x ∈ U and t ∈
[
0, 1

2

]
. Finally note for fixed

t ∈
[
0, 1

2

]
that Ht(x) ⊆ IC(x) on U from (2.5). Thus G ∼= F? in AI∂U(U,E). Similarly with

Λ(x, t) = F((2 − 2t) r(x) + (2t− 1) x) for (x, t) ∈ U×
[

1
2

, 1
]

we have F? ∼= F in AI∂U(U,E). Combining gives G ∼= F in AI∂U(U,E) so (2.6) is true.

Theorem 2.23. Let E be a Banach space, C a closed convex subset of E, U0 a bounded open convex subset of E,
U = U0 ∩C, F ∈ AI∂U(U,E), G ∈ AI∂U(U,E), and F ∼= G in AI∂U(U,E). Assume (2.4) and (2.5) hold. Now F

is essential in AI∂U(U,E) if and only if G is essential in AI∂U(U,E).

Proof. Assume G is essential in AI∂U(U,E). We will use Theorem 2.19 to show F is essential in AI∂U(U,E).
Let θ ∈ AI∂U(U,E) with θ|∂U = F|∂U. Now (2.6) guarantees that θ ∼= F in AI∂U(U,E) and this together
with F ∼= G in AI∂U(U,E) implies θ ∼= G in AI∂U(U,E). Thus (2.3) holds so Theorem 2.19 guarantees that
F is essential in AI∂U(U,E). A similar argument shows if F is essential in AI∂U(U,E), then G is essential
in AI∂U(U,E).

Remark 2.24. One could replace strongly inward with respect to C with F(x) ⊆ IC(x) on U in Definitions
2.15, 2.16, 2.17, 2.18, and trivial adjustments in the proofs above will establish Theorems 2.19 and 2.20
(note instead of [1] one could for example use Theorem 3 and Corollary 1 in [4]). Similarly we can obtain
an analogue of Theorem 2.23.

References

[1] R. P. Agarwal, D. O’Regan, Fixed points for admissible multimaps, Dynam. Systems Appl., 11 (2002), 437–448. 1, 2.14,
2, 2.24

[2] R. P. Agarwal, D.O’Regan, A note on the topological transversality theorem for acyclic maps, Appl. Math. Lett., 18 (2005),
17–22. 1

[3] K. Deimling, Multivalued differential equations, Walter de Gruyter & Co., Berlin, (1992). 1, 2.13
[4] P. M. Fitzpatrick, W. V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, Pacific J. Math.,

54 (1974), 17–23. 1, 2.24
[5] G. Fournier, H.-O. Peitgen, On some fixed point principles for cones in linear normed spaces, Math. Ann., 225 (1977),

205–218. 2.22
[6] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, (2003). 1
[7] B. Halpern, Fixed point theorems for set–valued maps in infinite dimensional spaces, Math. Ann., 189 (1970), 87–98. 2.14
[8] D. O’Regan, A continuation theory for weakly inward maps, Glasgow Math. J., 40 (1998), 311–321. 1
[9] D. O’Regan, Homotopy and Leray–Schauder type results for admissible inward multimaps, J. Concr. Appl. Math., 2 (2004),

67–76. 2.14
[10] D. O’Regan, Continuation theorems for acyclic maps in topological spaces, Commun. Appl. Anal., 13 (2009), 39–46. 1

https://www.researchgate.net/profile/Ravi-Agarwal/publication/298581865_Fixed_points_for_admissible_multimaps/links/5727612b08ae262228b44a24/Fixed-points-for-admissible-multimaps.pdf
https://www.sciencedirect.com/science/article/pii/S0893965904002873
https://www.sciencedirect.com/science/article/pii/S0893965904002873
https://books.google.com/books?hl=en&lr=&id=ejhT-QMEVZ0C&oi=fnd&pg=PA1&ots=QEQnP3Iilz&sig=SRa6ZlNgBk3JzakGI9S2ln2x3C4
https://msp.org/pjm/1974/54-2/p02.xhtml
https://msp.org/pjm/1974/54-2/p02.xhtml
https://link.springer.com/content/pdf/10.1007/BF01425238.pdf;On.pdf
https://link.springer.com/content/pdf/10.1007/BF01425238.pdf;On.pdf
https://doi.org/10.1007/978-0-387-21593-8
https://link.springer.com/article/10.1007/BF01350295
https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/continuation-theory-for-weakly-inward-maps/FA63910FA1955CCC086CEBA1974F712D
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Homotopy+and+Leray--Schauder+type+results+for+admissible+inward+multimaps&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Homotopy+and+Leray--Schauder+type+results+for+admissible+inward+multimaps&btnG=
http://www.dynamicpublishers.com/CAA/CAA2009/05-CAA-29-05.pdf

	Introduction
	Topological transversality theorem

