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Abstract

The aim of this work is to study a pseudomonotone variational inequality and a fixed point problem involving pseudo-
contractive mappings in real Hilbert spaces. We introduce an inertia-based iterative algorithm for finding a common solution
to this problem. The strong convergence of the proposed algorithm is proved. Finally, numerical examples are provided and
also meaningful comparisons of these results with those in [Y. Yao, M. Postolache, J. C. Yao, Mathematics, 7 (2019), 14 pages],
proving that at our proposed numerical schemes are more efficient.
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1. Introduction

Let H be a real Hilbert space. We denote by (-, -) the inner product on H and || - || the norm induced
by the inner product. Let C be a nonempty, closed, and convex subset of H. In this paper, we study a
problem related to the well-known variational inequality problem VIP defined as follows: find x* € C

such that
(f(x*),y—x") >0, (1.1)

where f: H — H is a nonlinear operator. Consider that VI(C, f) is the solution set to problem (1.1) and
make the following assumptions:

(i) VI(C,f) is nonempty;
(ii) fis pseudomonotone on H, that is

(f(x),y—%) > 0= (f(x),x—%) >0, for all x,x € H;
(iii) fis L—Lipschitz continuous on H (for some L > 0), that is

|If(v) — f(w)|| < L|[v—w||, for all v,w € H.
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Variational inequalities represent an efficient tool in the study of problems arising from optimization,
economics, differential equations, engineering etc. For details, please refer to [2, 4, 12] and the references
therein.

A well known iterative method to solve the VIP (1.1) when f is of monotone-type is the projected
gradient rule defined by:

Xni1 = Pc(I—Af)xn, n €N, (1.2)

where Pc is the metric projection map from H onto C and A > 0 is the step size. The projected gradient
algorithm has been studied extensively by many authors (see, e.g., [13, 15] and the references contained
therein).

The following facts on the numerical scheme (1.2) are considered known (see, e.g., [19]).

(i) If the operator f is n-strongly monotone and L-Lipschitz continuous, with 0 < A < {5, then there
exist a unique point in VI(C, f), and the sequence {x,, } generated by process (1.2) converges strongly
to this point.

(ii) If f is n-inverse strongly monotone, the solution to the VIP(1.1) does not always exist. In the situation
in which VI(C, f) is nonempty and 0 < A < 2n, then it is a closed and convex subset of H. In this
case, the sequence {x,,} generated by (1.2) converges weakly to one of the points in VI(C, f).

(iif) The hypotheses that f is monotone and Lipschitz continuous do not ensure the convergence of the
sequence {xn } generated by scheme (1.2) to an element of VI(C, f). To overcome this deficiency of the
projected gradient rule (1.2), in 1976, Korpelevich [14] introduced the so-called extragradient method
for solving the VIP (1.1) when f is monotone and L-Lipschitz continuous in the finite dimensional
Euclidean space R™, as follows:

{yn =Pc (I - Af)xnr

(1.3)
Xni+1 = Pc(I—Af)yn, for alln € N,

where the step size is A € (0, 1). It has been proved that the sequence {xn} converges to a point in
VI(C, f).

The Korpelevich iterative sequence (1.3) has been developed in different forms. For more results
involving (1.3), please consult [6, 14, 20, 21].
Next, we consider the following fixed point problem

Find x € C: Tx =x, (1.4)

where T: C — C is a pseudocontractive mapping. Solving fixed point problems involving different nonlin-
ear operators has been studied for many years in literature, under different settings (see, e.g., [5, 7, 10, 18]
and the references therein). More precisely, algorithmic approximation theories and experiments of pseu-
docontractive operators have been considered, see for instance [1, 25]. In 2019, Y. Yao et al. [24] studied
the problem of finding a fixed point of pseudocontractive operator and a solution point to variational
inequality problems in real Hilbert spaces. They introduced an iterative algorithm and proved that the
sequence strongly converges to a common solution to the pseudomonotone variational inequalities and a
tixed point of pseudocontractive operator. The construction of fast convergent iterative algorithms is of
interest for practical applications. In this direction, an inertial-type extrapolation method was first pro-
posed by Polyak [16] as an acceleration process. In recent years, some authors have constructed various
fast iterative algorithms by inertial extrapolation techniques, such as the inertial Mann algorithms [15],
the inertial forward-backward splitting algorithms [14] and so on.

Motivated by the work of Yao et al. [24] and the ongoing research in this direction, it is our purpose in
this article to propose an inertia-based iterative scheme and prove that the sequence strongly converges to
a common solution to a pseudomonotone variational inequality and a fixed point of a Lipschitz pseudo-
contractive operator in real Hilbert spaces. Next, we compare the performance of our proposed schemes
with those of Yao et al. [24]. We provide numerical examples and use them to realize the second objective.
The examples show that our proposed algorithms are more efficient than those of Yao et al. [24].
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2. Preliminaries
We start by recollecting some important classes of operators, which will be used in the sequel.

Definition 2.1. Let T: H — H be an operator on the Hilbert space H.

(i) T is said to be a contraction of coefficient 3 if there exists 3 € (0,1) such that

ITx — Tyl < B|[x —yl|, for all x,y € H.
(ii) T is called ©-strongly monotone if there exists © > 0 such that
(T(x) = T(y),x —y) = 0||x —y]||? forall x,y € H.
(iii) The mapping T is 6-inverse strongly monotone if there exists 6 > 0 such that
(T(x) = T(y),x—y) >0 T(x) = T(y)|? forall x,y € H.
(iv) T is a pseudocontractive operator if
[Tx —Ty|> < [x —y|> +|[(I=T)x— (I-T)yl? forall x,y € H.

(v) T is called weakly sequentially continuous if for any given sequence {xn} C H which satisfies the
relation x,, — x*, necessarily we have T(xn) — T(x*).

The relations in the next lemma are features of real Hilbert spaces.

Lemma 2.2. Let H be a real Hilbert space. The next relations are accomplished.
(i) Forall x,y € H, and 6 € [0,1] ([3]),
8w+ (1= 8)yl? = 8[| + (1= 8)[v]|* — 8(1 &) x — y|*.
(ii) Forall x,y € H,
20¢,y) = x|+ [yl = [ —yl* = Ix+ylI = [IxII* = [[y]I*
@iii) Ifx,y € H,
I —yl* < [IxI* +2¢y, x —y)-
We recall now a property which characterizes Lipschitz pseudocontractive operators.

Lemma 2.3 ([23]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H. If T: C — C is an
L-Lipschitz pseudocontractive operator, and 0 < n < ﬁ, then, for any fixed point p of T, and for any u € C,
the next inequality is accomplished

Ip —T((1—n)u+nTw|* < [Ju—pl*+ (1 —n)u—T{(L—n)u+nTu)|>

The following lemma provides conditions in which a sequence endowed with suitable properties is
convergent to zero.

Lemma 2.4 ([22]). Let {an} and {cn} be two sequences of nonnegative real numbers such that any1 < (1—
dn)an +bn +cn, for all v > 1, where {0} is a sequence in (0,1) and {bn} is a sequence of real numbers.

Furthermore, suppose that )  cy < oo. Then the following results hold.

n=1

(i) If bn < 0nM for some M > 0, then {an} is a bounded sequence.
(ii) If Zl dn = oo and T}grgo sup lg—: < 0, then the sequence {ar} is convergent to zero.
n=
Lemma 2.5 ([25]). Let H be a real Hilbert space, C a nonempty, closed, and convex subset of H and T: C — C be

a continuous pseudocontractive operator. Then

(i) The set of the fixed pints of f T is a closed, and convex subset of C.
(ii) The operator T is demi-closed, i.e, un — 1, and T(un) — u* implies that T(1) = u*.
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3. Main Results

In this section, we introduce an inertia-based iterative algorithm in order to determine the solutions
to both problems (1.1) and (1.4), and provide a convergence analysis of the iterative sequence.

In the next iterative process, H is a Hilbert space, and C is a nonempty, closed, and convex subset
of H. f is a Lipschitz operator on C, of constant k, T: C — C, and h: C — C. Denote by W(x,) =
{x‘there exists {xn;} C {xn}, xn; — x}.

Algorithm 3.1 (Inertia-based iterative procedures for the variational inequality (1.1) and the fixed point
problem (1.4)). Let xo, x; € C be fixed, and {on}, {on} {0n} be sequences in (0,1). Consider y € (0,1),
ne (0,1),0€(0,1), and T € (0,2) respectively.

Step 1. Let wy € C be an initial value. Set n = 0.
Step 2. Assume that the sequence {wy} in C has been constructed and then calculate Pc[wyn —f(wy)].

Step 3.

Case 1. If Pc[wy — f(wn)] # wy, then compute the sequence {yn } as follows:
yn = Pelwn —py ™V f(w)), (3.1)
where m(wy) =min{0,1,2,3,- - -} and checks
wy ™0V [ (wn ) = Fyn) || < Own = ynll-
Define the sequences {wn}, {un}, {&n}, and {x,,} by the following rules:

Wn = Xn + en(xn - anl)/
Wn—yn+uy™ W f(y,)
Wi —yYn+uymOvnIflyn)[2 ]’ (3.2)

En=1—op)un +0onT[(1 =01 )un +0nTunl,
Xn+1 = otnh(&n) + (1 —on)én, foralln > 1.

Un =Pc lwn —1(1— e)HWn 7yn||2 I

Case 2. If Pc[wy, — f(wn)] = wn, then calculate {x,, 1} in the following form:

Wn =Xn +0n(Xn —Xn_1),
&n = (1 —On)Wn + O-nT[(l —On)un + dnTwnl,
Xn+1 = nh(&n) + (1 — o )&, forall, n > 1.

Step 4. Set n :=n +1, and return to Step 2.

Following Remarks 1 and 2 from [24], we consider the next observations.

Remark 3.2. The orthogonal metric projection P¢c : H — C possesses the following characteristic: for any
given x € H,
(x =Pc(x),y—Pc(x)) <0, forally € C.

Therefore, x € VI(C,f) if and only if x = Pc[x —f(x)], for all T > 0. Presume that, at some iterative
step, wn = Pclwn — f(wy)]. Then w;, is a solution to the variational inequality problem, and hence
wn (W) C VI(C, f). Consequently, Wy, (xn,) C VI(C, f).
Remark 3.3. Following [24, Remark 2], for given wy,, there can be found m(wy, ) such that (3.1) holds.

The next proposition, whose proof follows the footsteps of that of Proposition 1 in [24], will help us

show that our proposed iterative scheme, and mainly states that Algorithm 3.1 is well defined.

Proposition 3.4 ([24]). Suppose that H is a Hilbert space and C is a nonempty, closed, and convex subset of H,
and that x* = Prh(x*) (see Theorem 3.6 below for definition of T').
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1.) In the context of Algorithm 3.1, if wy, # Pclwn — f(wn)], then wy —yn + m/m(“’“)f(yn) # 0.
2.) Foranyn > 1,
(Wn —yn + Wm(w")f(yn)zwn —x") = (1-0)|wn —ynH2~
3.) Foranyn > 1,
(2—1)t(1—8)*|wn —yn|*
Wi —yn + wy™ V) f(yn )2

Hun_X*Hz < ||Wn—X*H2_ (3.3)

4.) Foranym > 1,
[&n — x> < lun —x*[|* = on (80 — on) un — TI(1 = 8n )Jun + 8 Tun]||*. (3.4)

Remark 3.5. In Case 1 from above, f(wy) # 0, by Remark 3.2, and m/m(wn)f(yn) # 0, by Remark 3.3,
for all n > 0. Using Proposition 3.4, we deduce that the sequence {u,} is well-defined, and hence the
sequence {xn } is well-defined. Furthermore, if Pc[w;y, — f(wn )] # Wy, we can determine the sequence {yn}
as follows:

Yn = Pclwn — py™Mn)f(wy )],

where m(wy,) =min{0,1,2,3, ...} satisfies the inequality

M’m(wn) [f(wn) —flyn) | < 8flwn —yn|l- (3.5)

Theorem 3.6. Let C # () be a convex and closed subset of a real Hilbert Space H, and f be pseudomonotone operator
on H which is weakly sequentially continuous, and Lipschitz continuous on C with a Lipschitz constant k > 0. Let
T: C — C be an L-Lipschitz pseudocontractive operator with L > 1 and h: C — C be a 3 contractive map. Assume
that T' := VI(C,f) NF(T) # 0 and let the iterative parameters {axn}, {on}, {On}, and {dn} satisfy the following
conditions:

(Cl): lim oy =0and ) on =oc;
n—o0 =0

(C2): 0 < 0y < Oy, with 0y, defined by

6, otherwise,

where Y 771 €n < 00, and limn s ;—z =0;
(C3): 0<o<opn<T<dn<d< ﬁ,forulln}&

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to x* € ', with x* = Prh(x*).

Proof. We divide the proof into three different steps.

Step 1. We show that the sequence {xn,} is bounded.
Having in view (3.2), and the inequalities (3.3) and (3.4) from Proposition 3.4, we get

[Xn41 —x*|| = |[on (h(En) = %) + (1 — otn ) (En — XT)||

(1T —on)||&n =X + on[[R(En) — x7|

1 —an)[[&n — X[ + an [[h(&n) —h(X")[| + o [[R(x™) — x|
1—an)||&n =X || + o Bl[En — x*[| + o [[R(x™) — x|

1— o+ onB)||En — X7 || + an [[R(x") — 7|

1— ot + otn B)||wn —x*|| + on ||R(x™) = x|, n > 1.

N

— —~ —~ —

INCINCIN N

Therefore, it can be noticed that

[Xn41 —X*” <[ —on(1—B)] ”Xn +0n(xn —Xn1) _X*H + O(th(X*) _X*H
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< (= an (1= R))lPen =X +Onfxn —=xn—1fl] + an[[R(x") —x"]|

= (1—atn (1= B))xn — x|+ (1= ot (1= B))On [xXn —xn_1]| + am|[R(x*) —x*| (3.6)
: MG =7 | (1= o (1= BOlIxn —xn i
< (T—on(1=B))xn —x"[| + on(1—B) { 1-p + on(1—0)
* ||h'(X*)_ *H €n
<u—anu—ﬁnvn—x!+“d1—ﬁﬂ 1—F  an(1—P)

Applying Lemma 2.4 (i), and condition (C2) from Theorem 3.6, inequality (3.6) implies the bounded-
ness of {xn}. Hence, {&n}, {h(&n)}, {un), {Tun}, and {wy} are also bounded. Let M > 0 so that ||xn| < M,
forany n > 1.

Step 2: We aim to prove that W(wy,) C T
Taking advantage of inequality (3.2) and Lemma 2.2 (iii), we obtain

Hxn—o—l _X*Hz = ||(xn h(&n) _X*) +(1—on)(én _X*)HZ

1_0(71 ||¢t—vn X H +2(Xn<h((t—vn)_x s Xn4+1 —X >
Virtue of (3.3) and (3.4) imply that (3.7) becomes
[Xna1 —x*)? < (1—«)? [un —x*)? = o (8n — o) Jun — TI(1 = 85 )tp + 8 Ty HZ]
< (1= an)?[wn —x*[> = (1 — an)?on (5n — on) [un — TI(1 = 8 )un + 8n Tun]|?
1-— 22—1 1— )2|lw 4
- e 3 2 ) 17 ki =) 8
[Wn = yn + py™ O f(yn )

lun — T(1—0n)un + SnTunH2

< (1_0‘11)2”"\)11_7(*”24’“11 _(1_0‘11)20-11(611_0—11) x
n

_u—au%Z—ﬂ(l— an yn*
(XnHWn Yn +Hy™ UTI ”2

+2(h(&n) —x*, xn11 —Xx%) | -
Keeping in mind Condition (C2), it can be observed that

lwn = x*|* = [lxn + 8 (xn —xn—1) —x*|?
= [ = X*[1* + 20 [lxn = x*[[lIxn = xn—1l + 6% X0 — xn-1?
= [xn = X*[* + Bnllxn = xn—1l[2lPxn = x*|| + On X0 — xn-1]l] (3.9)
< [lxn — x*|]* +30n |[Xn — xn_1/|M for some M >0
< [lxn —x*|1* + 3Men.

Furthermore,

20‘n<h(£n) - X*/ Xn+1— X*> = 20‘n<h(£n) - h(X*) + h(X*) - X*/XnJrl - X*>
2000 ||h(En) — R(X™) || [xn+1 — X*|| + 200 (R(x™) — X", X 41 — X™)

<
< 200 BllEn =X xn1 = X7 + 20t (R(x7) =%, X1 = X7).

From inequalities (3.3), (3.4), (3.9), it follows that

[&n —x*[| < [[wn —x*|| < [[xn —x*|| + v/3Men.

Therefore,

20 (h(En) — X%, Xn41 — X*) < 200 B [[[xn — x*|| + v/3Men.] [[xn1 — x|
+ 20t (h(X") —x*, X411 — X). (3.10)
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On the other hand, we have

”Xn+1 _X*H = ||(xn(h(£n) _X*) + (1 - o‘n)(an _X*)H
< o |[h(En) =X+ (1 — an)[|En — X7

< Ixn —x*|| + vV3Men + an||h(&n) —x¥|.

Having in mind relations (3.10) and (3.11), it follows that

20 (h(En) — X%, Xn41 — X*) < 200 B [[|xn —x*|| + v/3Men] - [[xn — x| + an|[h(&n) —

+ 3Men] + 20t (h(X") —x*, X417 — X).
Using relations (3.9) and (3.12) in (3.8), we are led to

[%ns1 — x| < (1= an)?[|[xn —x*[|* + 3Men
) lun — T — & )un + 6n Tun ||?
n

On

+ ot [—(1— o‘n)ZGn(én

(1—on)2(2—1)T(1—6) zuwn yn*
“n||wn Un""u’y yn ||2

(3.11)

*

(3.12)

+ 20 B [ xn —x*|| + /3 en.} [ =% + otn[(En) —x* ]| + v/3Men]

+ 200 (h(X*) = X", Xp a1 — X))

:(1—ocn)2Hxn tz (1— on)*3Men,

+ 200 B [[xn — x|+ otn [ xn — X[ [[R(En) — X[ + v/3Men xn —x*|

+V/3Men|[xn — x*|| + anv/3Men|[h(&n) — x*|| + v/3Men.\/3Men. |

+ 200 (h(x*) —x*, xn 11 —x¥)
) lun — TI(1 — 8 )un 4 6n Tun, ||?
&n

+on |—(1— o‘n)zo-n(én —On

(1—on)?(2—1)T(1-9) 2Hwn yn*
n [[Wn —yYn +py™ flyn ||2
= (1 — ot )?|Jxn — x| + 1—ocn)23Men

+ 20t B [[xn —x||? + otn [ xn —x*[[[[h(&n) —x*[| +2v/3Menxn — x|

+ anvV/3Men |[h(éEn) —x*|| + 3M€n] + 20ty (h(x™) —x*, X471 — x™)
lun — T — & )un 4+ 60 Tun ||?
on

+otn |—(1— o‘n)zo-n(én —0On)

(1= 0n)?2=1)t(1 = 0)*[|wn —yn*
Xn [[Wn —yn + py™mWndfyn) |2

(3.13)

Boundedness of {|[xn —x*[|}, {[lxn —x*[[[[h(&n) —x*[|} and [[h(&n) — x*[|}} gives that there exist Ko > 0, K; >

0,K> >0, and K > 0 such that

[xn =X I (En) =X I < K, [lxn —x*[ < Ko, IIxn —x*|* < Kyand ||h(En) —x*[ < K

Consequently, from (3.13), we have
X1 — x|

< (1 =20 (1= B))[[xn —x*||* + ctn[—(1 — 0tn)? 0 (8 — On)

[un = TI(T = 8n)un + 8nTun?

Xn
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(1= an)*(2—1)t(1—0)*|wn — yu/*
n [[Wn —yYn + pym ) f(y, )2
+ ZaiBK +4on v/ 3MenKg + 2oc$J3Kz + 60, pMen + oc%lK1 +3Men + 20t (h(x™) — X", xn 41 — x™)]

lun — TH(1 —0n)un + SnTunH2
Xn

= (1—20n (1= B))[[xn —x*||* + ctn[—(1 — 0tn)?0n (80 — On)

(=)’ 2=1)T(1 - 0)*lwn y;\l (3.14)
Otn [[Wn = Yn + py™ O £y, )|

+ ot (2000 BK + 4B v/3Men Ko + 200 BK2 + 6BMey + 0tn Ky + 3Mi—“) F2(R(X) — X*, Xnet — X))
n

| lun —TH(1 —0n)un + SnTunH2
Xn

< (1 — 20 (1— B)) ||Xn - X*Hz + an [—(1— O‘n)zo‘n(én —On
(1—an)?(2—1)t(1 - 0)*[|wn —yn*
Xn [[Wn —yn + py™ el fyn) |2
+ oty (202 BK’ + 4ot B1/3MenK' + 202 BK + 60 BMen + 02K’ +3Mey +3M1)

Xn

+20n <h(X*) —x", Xn+1— X*>]

Hun - T[(l - 671)1111 + 6nTun”2

= (1 _20(71(1 - B)) ||Xn _X*HZ + Xn _(1 - o‘n)o_n(én - Un) o

(1—otn)(2—D(1 —0)||wn —yu*
_ d+ Bn +2(h(x*) —x*, xni1 —x™)1,
o[ Wn —yn + uym(W“)f(Un)"z " < e )
where B = 20, K’ +4B/3Men K’ + 20, BK' + 6 Men + o K’ —|—3M;—‘;, and K’ = max{K, K, K, Ko}
Notice that 3, - 0 as n — oco. Set S = ||xn —x*|| and
(1—on)?(2—1)t(1—6)?[|wn —ynll*
Xn [[Wn —Yn + pym ey, )2

un — TI(1 — 8n)un 4 60 T ||?

on)
Kn

th =—

(3.15)

_(1_“n)20—n(5n_ +Bn+2<h(x*)—x*,xn+1—x*>.

Inequality (3.14) leads to
Sni1 < (1—20n(1—B))Sn + antn, n € N. (3.16)
We show that lim sup t, is finite. From (3.15), we deduce that

n—oo
tn < Bn +2(R(x") =X, X1 —x7) < B+ 2[R (x") = x"|[[[xn1 — X7

This inequality, jointly with the boundedness of {x,}, implies that lim sup t,, has an upper bound.
n——oo
Next, we show that limsup t,, has a lower bound. More precisely, we prove that —1 < limsup ty.
n——o0 n——oo
Presume this inequality does not hold true. It follows that limsup t,, < —1. So, there exists Ng € IN such
n——oo

that t,, < —1 when n > N,.
From (3.16), we have
(1—-20n(1—B))Sn + antn
(1—20tn (1 —P))Sn — otn
=Sn—n(14+251) + 200 S < S — xn (1 +2S81) + 200 Sn
< Sp— on.

Sn+1 <
<

n n
Hence, Sy+1 < Sny— 2 o, and we get that limsup S, < Sy, —limsup )} oy = —oo. This is a
k=Njp n——o0 n——oo0 k=Nj
contradiction, so —1 < limsup t,, < oo.
n—oo
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Due to the fact that {wn,} is bounded, there exists a subsequence {wy } C {wy} such that w,,, =~ p € C
and

(2 - T)T(l - e)ZHWﬂi — yni ||4

limsup tn, = lim t, = lim [—

n—oo 1—00 i—o0 (XniHWTli _yni + p:ym(Wnl)f(ynl)HZ
+ By +2(h(x") =X, X0, 11 —X") (3.17)
lwn, — TI(1 — 8n ) un, + 8n, Tun,] HZ]

- 0-711(6111 - O-Tli) o
n;

1

Based on the boundedness of the sequences {xn,}, without loss of generality, we may assume that

lim 2(h(x*) —x*,xn,+1 — x*) exists. Also, using (3.17), we can show the existence of the following limit
1—00

(2 - T)T(l - e)z”wni —Yny ||4 Huni — T[(l — 6ni)uni + 6“1Tuni] Hz

lim +0on (On; —ony) . (3.18)
00 Lo [[wn =y +wy™ )2 T o,
Since lim an, =0, and liminf oy, (6n, — on,) > 0, from (3.18) it follows that
1—00 1—00
_ 4
lim L 0, (3.19)
troo HWTli —Yn; HHY ni f(yni)HZ
and
Bim [[un, — T[(1 = 8n,)tn, +8n, Tun,J||* = 0. (3.20)
1—00

Wn,;

Considering that |[wy, — yn, + py™™n)f(yy,)|| is bounded and having in mind relation (3.19), we obtain

lim [[wn, —yn,|| =0. (3.21)
1—00
From (3.2), and assumption (C2), we have
[Xn = Ynill < lxng =wnill + [Wng = ynll = Onillxn —xn 4 [+ [Wn —ynidl,

and also
lim HXTH ~Yny | =0. (3.22)
1— 00

Inequalities (3.5) and (3.21) compel

lim [[f(wn,) —f(yn,)|| =0.

i—o0
Using (3.22) and the fact that f is Lipschitz continuous, we have

lim [[f(xn,) — F(yn,)[| = 0.

i—o0
From (3.2), we deduce that

5> Wn—Yn+ Pﬂ/m(wn)ﬂyn)
[Win —yn + HYm(W“)f(Un)HZ

:| —Pcwn

un —wnl = \ Pe {wn—m — 0)wn —yn|

T(1— B)Hwn _UnHz
[Wrn —yn + py™Ovn)f(y, )|

Mixing this inequality with (3.19), we obtain

lim [jup, —wn,|| =0. (3.23)
1—00
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Applying (3.2), assumption (2) and having in view (3.21), (3.22), and the previous equality, we have
lim |Jun, —xn,|| =0.
i—00
The characterization of the projection Pc compels
(W, — m/m(W“i)f(wni) —Yn,, Yn, —p) =0, forall p € C.

It follows that

1
<f(wni)/p _Wni> 2 <f(wni)’yni _WTL1> + W<yni —P,Yn; _WTL1>/ for all P e C. (324)

The boundedness of the sequences {f(wn,)} and {yn,}, and Remark 3.3 imply % < H.Ym(wni) < M. Using
(3.21) and (3.24), we have

liminf(f(wn,),p —wn,) =0, forall p € C,

i—00

which implies that there can be found a positive real number sequence {(;} which satisfies lim ¢; = 0.
j—ro0

There exists a smallest positive integer k; such that

(fWny),p—wnyj) + ¢ =0, for all j > k;. (3.25)
From Remark 3.5, we get that for each j > 0, f(wy,;) # 0. If we denote by w(wp,j) = %, then
(flwnj), w(wnj)) = 1. From (3.25), we obtain
(f(wnij )P+ G w(wmj) — wn.l)_) > 0. (3.26)
Furthermore, (3.26) together with the fact that f is pseudomonotone on H imply
(flp + Gwlwn, ), p+ Gw(Wn ) =wn ) > 0.
Therefore,
(f(P)p—wn,) = (f(p) = f(p + Gwlwny )), P+ Gwlwn, ) —wn ) + (f(p), —Gw(wn, ). (3.27)

Since the sequence {ij} is bounded, without loss of generality, we may assume that w,,; — v € C
as j — oco. Having in mind that ||wn, —xn| — 0 and since {x,} is bounded, we have that there exists a
subsequence {xn,} of {xn} such that Xng = V.

Moreover, due to the fact that f is weakly sequentially continuous f(wy ;) — f(v).
Presume that f(v) # 0 (otherwise, v € VI(C,f)) and w(wy) C VI(C, ). It follows that

liminf |[f(wn, )| = [[f(v)[| > 0O,
j—o00 )

and ¢
— lim — 2 —0.
o0 [[Fwan,

lim |G (wn, )|
j—00 )
Using relation (3.27) together with the fact that f is Lipschitz continuous, we have
(flp),p—v) 20,

and we get that v € VI(C, f), and hence w(wy) C VI(C, f).
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Since T is Lipschitzian, the next relations hold true

un — Tun|| < [Jlun =TI — dn)un + dnTunl|| + || TI(1 — n)un + dnTunl — Tun ||
< Hu—n - T[(l - 671)1111 + (SnTun] H + LénHun - TunH

) (3.28)
§ m”un - T[(l - 6n)un + 6TLTuTl” — 0.
From (3.20), (3.23), and (3.28), we get
lim ||[wn 5 —Twnjl| =0.
)—0
Taking advantage of (3.2), assumption (C2) and the previous equality, we obtain
HXTH- - TXTH- H < ||Xni~ — Wn,, H + ”Wni- - TWTli- H + HTWTL‘L- - TXTH- H
) ) ) ) ) ) ) ) (3.29)
< T+ Dfwng = xng [+ [Wny, = Twn | = 0.
Applying Lemma 2.5 to (3.29), we conclude that v € F(T), hence v € VI(C,f)NF(T) =T.
Step 3: We show that x,, — Prh(x*). Notice that in Case I or Case I,
limsup(h(x*) —x*, xn4+1 —x*) = (h(x*) —x*,v—x") <0.
n—oo
Let x* = Prh(x*). Then, from (3.2) and inequality (3.14), we have
e = %1% < (1= 200 (1= B))[xn — x|
—TH(1—-29 SnTun|)?
¥ |1 )20 (85 — o) I = THLZ O Jtn 00 T
Kn
(1— o )?(2—71)T(1 —0)?||wn —yn|*
— = [wn = yn] (3.30)

n [[Wn = Yn + pym e fy,)|?
+ Pn+ 2<h(X*) _x*/XnJrl —X*>]
< (1 - 2“n(1 - B))Hxn _X*”Z + onPBn +20‘n<h(X*) _X*,Xn+1 - X*>
< (1= pn)xn —x*[2 +vn,
where pn, =20, (1—8) € (0,1), for all n, yn = &nPn + 20 (h(x*) —Xx*, xn41 — x*).

In order to prove that {x, } converges strongly to x*, we shall apply Lemma 2.4 (ii). Observe that either

in Case 1 or Case 2, it is not difficult to see that lim sup % < 0, as fn — 0. Hence, from Lemma 2.4 (i)
n—oo

and (3.30), we conclude that x,, — x* := Prh(x*). This completes the proof. O

Remark 3.7. It is obvious that the monotonicity implies pseudomonotonicity. Hence, Theorem 3.6 holds
when the involved operator f is monotone.

Algorithm 3.8 (Inertia-based iterative procedures for VI). Let xo, x; € C be fixed, and let y € (0,1),
ne (0,1),0€(0,1), and T € (0,2), respectively.
Step 1. Let wy € C be an initial value. Set n = 0.

Step 2. Assume that the sequence {wy,} in C has been constructed and then calculate Pc[w;, — f(wy)]. If
Pcwn — f(wn)] = wy, then stop; else go to the steps below.

Step 3. If Pc[wyn — f(wn)] # wy, then reckon the sequence {yn} as follows:

Yn = Pclwn — py™™n ) fw,, )],
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where m(wy) = min{0,1,2,3,...} and satisfies
ey ™[ (wn ) — f(yn) || < 8]l wn —yn,
and compute the sequences {wn}, {un}, {&n}, and {xn 11} by the following rule

Wn =Xn + en(xn _anl)/ n=l,

2 Wn—ynt+py™nf(yn)
‘ IIWn*yner/‘“(W“)f(yn)HZ]’ (331)

Xni1 = tnh(&n) + (1 — on )un, forallm > 1.

Un = PC[WTL _T(l - GJHWTL _yﬂ‘

Step 4. Set n :=n + 1, and return to Step 2.

Corollary 3.9. Suppose that VI(C,f) # 0. Assume that the iterative parameter {own} satisfies condition (C1) in
Theorem 3.6. Then the sequence {xn } generated by Algorithm 3.8 converges strongly to x* = Py(c ¢ h(x").

Algorithm 3.10 (Inertia-based iterative procedures for FP). Let xo, x; € C be fixed, y € (0,1), u € (0,1),
€ (0,1),and T € (0,2).

Step 1. Let wy € C be an initial value. Set n = 0.

Step 2. Assume that the sequence {w,} in C has been constructed. Let {,}, {on} and {0} be sequences
in (0,1). Compute the sequences {wn}, {&n}, and {xn 41} via the following iterations

Wn =Xn +en(xn _anl)/ nz= 1/
En = (1=on)wn +onT[(1—=0n)Wn +nTwy],
Xni1 = &nh(&n) + (1 —an)én, forall n > 1.

Step 3. Set n:=n+1 and return to Step 2.

Corollary 3.11. Suppose that F(T) # 0. Assume that the iterative parameter sequences {on }, {on}, and {6+ } satisfy
Conditions (C1) and (C2) in Theorem 3.6. Then the sequence {xn} generated by Algorithm 3.10 converges strongly
tox* = P]:(T)h(x*).

Remark 3.12. The application given in [24] to strict pseudocontractive maps carries over to the inertia
based results presented in here.

Remark 3.13. Yao et al. [24] introduced a Halpern-type iterative algorithm in order to solve pseudomono-
tone variational inequalities and fixed point problems for pseudocontractive operators. Theorem 3.6 and
the corollaries therein of our work improve the results of their paper by involving the inertia term, which
is known to accelerate the convergence of such algorithms.

4. Numerical examples

Example 4.1. Define f: R™ — R™, fx = e x'Qx ¢ . The variational inequality problem for thie operator,
f is equivalent to the operator A(x) = Px + q, where Q is a positive definite matrix (i.e., xTQx > ox|?,
for all x € R™), P is a positive semi-definite matrix, ¢ € R™, and 3 > 0. Observe that A is differentiable
and there exists M > 0 such that || VAx|| < M, for all x € R™. Therefore, by the mean value theorem, A
is Lipschitz continuous. Also, A is pseudomonotone, but not monotone (see, e.g., [4]). This is a popular
numerical example for variational inequalities with pseudomonotone cost function, which shows that
the class of pseudomonotone variational inequalities properly contains the class of monotone variational
inequalities and has been considered by many authors (see, e.g., [4]).
Our interest in this example is to compare Algorithm 2 (3.31) of our work with Algorithm 2 of [24].

Algorithm 4.2 ([24]). Let xg, u € C be fixed. Lety € (0,1), p € (0,1),0 € (0,1), and T € (0,2), respectively.
Step 1. Set n =0.

Step 2. Assume that the sequence {x,} has been constructed and then calculate P¢c [xn, — f(xn)]. If Pc[xn —
f(xn)] = xn, then stop, else go to the steps below.
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Step 3. If Pclxn — f(xn)] # xn, then compute the sequence {y} as follows:
yn = Pelin — py ™0 f(xn)],
where m(xn,) =min{0,1,2,3,...} satisfies the inequality
wy™ O£ (cn) = Flyn) || < Olxn — yn -

Calculate the sequences {u,} and {x 41} by the following rule:

[en—yn+pymEnlf(yq)|?

_ m(xn)
Un = Pclxn —T(1— 0)|[xn — yn |2 2nYn BTN
Xn+1 = nu+ (1 —otn)un, forall, n > 1.

Step 4. Set n :=n +1 and return to Step 2.

Table 1: Numerical results comparing our Algorithm 3.8 with Algorithm 2 of [24].

Our Algorithm 3.8 Algorithm 2 of [24]
CPU time (sec) No. of iteration CPU time (sec) No. of iteration
Casel m=50 0.8647 179 10.1159 1133
Case2 m =100 0.0571 153 10.1676 1453
Case3 m =150 0.0431 240 10.2162 2183
Case4 m =200 0.1015 540 10.4026 2697

Note: Here m stands for the dimension of the space.
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Figure 1: [[yn — wn|l vs number of iterations (n): top left: Case 1; top right: Case 2; bottom left: Case 3; bottom right: Case 4.
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Example 4.3. Define fx = Mx+q, M = BTB+ S + D, where S, D € R™ ™ are randomly generated
matrices such that S is skew-symmetric (hence it does not arise from an optimization problem), D is a
positive definite diagonal matrix (hence the variational inequalities has a unique solution) and q = 0.
Suppose the feasible set C := {x € R™|Bx < b}, for some random matrix B € R™*¥, and random vector
b € R* with non-negative entries. The unique solution of VI(f,C) here is x* = {0}, and the Lipschitz
constant k = [|[M|| (see [17]).

Next, consider the operator T: K — K defined by

T x+x, if x € Ky,
X =
ﬁ—x—i—x’, if x € Ky,

where K := {x € R?|||x|| < 1}, Ky := {x € R?|||x|| < 3}, Kz := {x € R%} < ||x|| < 1}. Then T is a Lipschitz
pseudocontractive map (see [8]), with the unique fixed point zero.

Table 2: Numerical results comparing our Algorithm 3.1 with Algorithm 1 of [24].

Our Algorithm 3.8 Algorithm 2 of [24]
CPU time (sec) No. of iteration CPU time (sec) No. of iteration
Casel m=50 0.0310 224 2.8768 8910
Case2 m =100 0.0475 311 2.8646 8579
Case3 m =150 0.1176 1087 9.2769 26160
Case4 m =200 0.0514 351 12.9830 38133

Note: m stands for the dimension of the space.
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Figure 2: ||yn —wn | vs number of iterations (n): top left: Case 1; top right: Case 2; bottom left: Case 3; bottom right: Case 4.
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Remark 4.4.

(1). Using Example 4.1 to compare the efficiency of Algorithm 3.8 of our work and Algorithm 2 in the
result of Yao et al. [24], it can be noticed from Table 1 and Figure 1, that our algorithm performs better
than that of Yao et al. [24].

(2). In Example 4.3, we have compared our Algorithm 3.1 with Algorithm 1 of Yao et al. [24]. It can be
observed from Table 2 and Figure 2, that our algorithm performs better than the algorithm of Yao et al.
[24].

(3). From the foregoing, we infer that the addition of an inertial term to Algorithms 1 and 2 of Yao et al.
[24] improves the efficiency of the algorithms.

(4). The algorithms considered by Yao et al. [24], and the algorithms considered in our work, respectively,
are the so-called Armijo-like line search method, which is known to have some deficiencies. To be more
precise, the computer takes more time to achieve convergence, and the step size depends on the Lipschitz
constant, which in many cases is difficult to approximate. Recently, self-adaptive line search methods
have been developed to solve VI problems in literature (see, e.g., [17] and the references therein), and it
is known to be superior to the former. However, this observation has no negative effect on our results
because one of the principal purposes of our work is to check if the addition of an inertia-term will
improve the performance of the algorithms of Yao et al. [24]. We recall the fact that in some cases, the
addition of an inertial term to some iterative algorithms used for solving VI problems does not lead to
any improvement on such schemes (see, e.g., [9, 11]).
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