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Abstract

We show that it is possible to define extensions of the Laplace transform that use a general Dirichlet series as a kernel.
These transforms, denoted by DLTs, further generalize those, considered in previous papers, in which the kernels were related
to Laguerre-type exponentials or Bell polynomials. Computational techniques, exploiting expansions in Laguerre polynomials,
and using Tricomi’s method, have been considered. Since it turns out that the transforms considered are obtained as linear
combinations of ordinary Laplace transforms, it is also possible to define an approximation of the relevant inverse transforms.
Numerical experiments, performed with the algebra program Mathematica, show that the introduced technique is fast and
efficient.
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1. Introduction

The classical Laplace Transform (shortly LT) [8, 19] writes:

L(f) = J exp ' (st)f(t)dt = F(s).
0

Similarly to the Fourier transform, it is one of the most useful tools in applied mathematics, with numer-

ous applications in ordinary and partial differential equations problems, as well as in signal analysis and

imagine processing [1].

The Laplace operator converts a function of a real variable t (often representing the time) into a func-
tion of a complex variable s (the complex frequency) and transforms differential into algebraic equations
and convolution into multiplication. It can be applied to functions belonging to L}, [0, +0c0) and converges
in each half plane Re(s) > a, with a denoting the convergence abscissa, which depends on the growth be-
havior of f(t).
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Tables of LTs, together with the relative anti-transforms, are widely used in the solution of differential
problems. For the numerical approximation of the LT of functions not included in the aforementioned
tables, a method introduced by E.G. Tricomi [17, 18] can be used. Such method relies on a link between the
LT and series expansions in Laguerre polynomials. Tricomi’s technique has been generalized by taking
advantage of more general expansions in orthogonal polynomials [13]; however the original formulation
turned out to be computationally more efficient.

The extensions of the LT considered in [12] have been examined in [4, 5] from a numerical point of
view, using the following procedure:

1. The kernel of the transform was approximated by a partial sum of a general Dirichet series, obtained
through the matrix pencil method.

2. The function to be transformed was expanded in a series of Laguerre polynomials (a sufficiently
high order of the partial sum of this expansion was chosen).

3. The Tricomi’s method was applied in order to derive the LT of each term.

4. The approximate generalized LT was obtained by a simple linear combination of terms.

Before exposing our new operator, which will be referred to as Dirichlet-type Laplace transform (shortly
DLT), we first recall the kernels considered in [4, 5, 12].

A first extension (called Laguerre-Laplace transform) is obtained by substituting the original kernel
expfl(st) with the function e;l(st), where ey (x) is the k-th Laguerre-Type exponential introduced in [7]
and extensively studied in [9-11].

In a further generalization, the kernel of the LT was replaced by an expansion whose coefficients are
related to Bell polynomials [2, 6, 14], exploiting a transformation introduced in [12] and based on the
Blissard formula [3], which is a typical tool of umbral calculus [15, 16].

In this article, upon noting that the reciprocal exponential term e~1(x) is just the first term of a general
Dirichlet series with unitary coefficients, a generalization of the LT is introduced by assuming, as a kernel
of the transformation, a general Dirichlet series with complex coefficients. In this way, the transformed
function is found to be the combination of LTs, which can be evaluated by means of the Tricomi’s method.
Such property allows defining the inverse of a DLT as a linear combination of ordinary LTs. This holds
true even in the case of Laguerre-type LTs [5] and Bell-type LTs [4], this addressing an open point in the
previous articles published on this topic.

In Section 2, we recall the definition of a general Dirichlet series, as well as the method due to FG.
Tricomi [17, 18] which allows evaluating the pair of LT and anti-LT as soon as the involved function is
expanded in a series of Laguerre polynomials.

In Section 3, we introduce the extension of the LT using a general Dirichlet series as the kernel of
the transformation. An approximation of the DLT operator is obtained by considering a partial sum of
the corresponding Dirichlet series, i.e., a linear combination of exponential terms each of which can be
Laplace transformed by a simple change of variable.

In Section 4, several test cases are investigated using the computer algebra program Mathematica® in
order to prove the effectiveness of the computational procedure for DLTs described in this article.

2. General Dirichlet series and Tricomi’s method

A general Dirichlet series is an infinite series of the form

D ane M, 2.1)
n=1

where {A,,} is a strictly increasing sequence of nonnegative real numbers tending to infinity, the coefficients
an, and the variable s are complex numbers.
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It is worth to note that in the particular case A, = logn we find the classical Dirichlet series
o0
a
Z s’
n=1

while, assuming A, = n, the power series in the variable e~ %,

Ak

is recovered.
The abscissa of convergence o of the series (2.1) is defined as

o :=inf{o € R: the series (2.1) converges Vs for which fi(s) > o}.

In order to avoid convergence problems, we will suppose in what follows to consider only general
Dirichlet series converging in the whole complex plane, that is for which o, = —oo0.

Actually, dealing with approximations, this condition is always satisfied even for the partial sums of
such a general Dirichlet series.

In what follows, we use a method due to Tricomi that gives a pair of Laplace transforms and anti-
transforms of a function expanded in series of Laguerre polynomials. This method applies naturally when
the kernel of the transformation is a general Dirichlet series, which is nothing but a linear combination of
exponential functions. In the particular case of the Laplace transform, the general Dirichlet series trivially
reduces to a single term. The Tricomi method is described below by Proposition 1.

We denote the LT of f(t) by the symbol £(f(t)), and by L, (t) Laguerre polynomial of degree m.

Tricomi, starting from the equation

L(Ln (1)) := J:O exp*l(st)l_m(t)dt =F(s) = % <S ; l>m,

proved in [17, 18] the following result.

Proposition 1. If the analytic function F(s) is reqular at infinity and we can find a real number h such that it can
be represented with a series of the form

1 & s+h—1\™
F pu— .
(s) s—i—hmZ_O%“( st h > ' 2.2)

then it is the Laplace transform of the sum of the series of Laguerre polynomials
f(t) - e_ht Z YmLm(t)/
m=0

which is absolutely and uniformly convergent for t > 0.

Then Tricomi, under the above conditions, found in particular the Laplace (transform and anti-
transform) pairs:

)= Y vmln(t) & Fsl=1 Y vm (1)
m=0 m=0

which have been widely used in applications.
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3. Dirichlet-type Laplace transforms

We introduce now an extension of the LT whose kernel is related to a general Dirichlet series, satis-
tying suitable conditions. We call this a Dirichlet-type Laplace Transform (shortly DLT). Such a trans-
form, depends on the umbral symbol a := {aj,ay,a3,...} for the coefficients, and on the constants
A :={A1,A2, A3, ...} for the exponents:

DL(A)(f) == J:o i ane MSte(t)dt = F(s). (3.1)

n=1

We suppose that the functions f is absolutely integrable and that the sequence {aj, az, a3,...} is
bounded, so that there exists a number K such that ¥Vn, |a,| < K.
We prove the following result.

Theorem 1. A numerical approximation of the transform in equation (3.1) is obtained considering a partial sum of
the type

oo N

DL(a; NN (F) = Jo Z ane MSH(t)dt = Fn(s), (3.2)

n=1
because for any fixed ¢ > 0 it is possible to find an integer N such that

[F(s) —Fn(s) <€, Vs:R(s)>o. (3.3)
Proof. Putting

m(a;)\)(f):DL(a;A)N(fHJ:o > aneMst(t)dt,
n=N+1

since the sequence of exponents {A,, } is positive, increasing and divergent, it results
vn > N +1, e*)\nst < e*?\NHSt,

and consequently we can choose N is such that the absolute value of the remainder term is bounded by

the inequality:
t
AN+1
where ¢ is less that the machine precision.

In fact, we can split the integration interval in the form [0, A] U [A, +-00) where A is such that

K

N-+1

K

J e}‘N“Stlf(t)ldt‘ =
0 A

K

J e}‘NHStIf(t)Idt‘ <e/2.
A

This is possible for every choice of N, since the LT of an absolutely integrable function is O(s™1), for
s — +oo. Furthermore, it is possible to choose N in such a way that

A
K J e MNHstf(4)|dt| < e/2,

0

since the integral is bounded and the sequence Ay — +o00. Therefore, the inequality in (3.4) is proved,
and consequently the result in equation (3.3) follows. O
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For the numerical computation of the approximate DLT, we use the Tricomi’s method, expanding the
function f(t) in a series of Laguerre polynomials, of course considering a partial sum of this series in such
a way that the remainder term is again smaller than «.

Putting:

M 0
ft) = ) YmLm(t)+RM(), Rm(t):i= )Y  ymLm(t), and [Ru(t)<e Vte [0,+00),
m=0 m=M+1

we find the approximate DLT:

14 Nog 1\™
DL(a;}\)(f):SZymZ}\n(l—}\s) :
m=0 n=1 n n

As a consequence of Proposition 1, for every fixed N satisfying equation (3.3), Tricomi’s method allows
to define an approximation of the inverse of the DLT, by noting following.

Theorem 2. Considering the DLT defined in (3.1), whose truncated kernel is given by Z:Zl ane St with
coefficients an, and exponents yn, subject to the above recalled restrictions, the following approximate DLT and
inverse DLT pairs hold:

N a 1 m
n
E — (1—— . .
An < )\ns> (3:5)
n=1

M 1 M
)= ymlm(t) © Fls)=-3 vm
m=0 m=0

Proof. As the kernel of the approximate operator in equation (3.2) is a linear combination of exponentials
which can be reduced by a simple change of variable to the Laplace’s kernel, it is sufficient to use equation
(2.2) in order to prove equation (3.5). O

Of course, the inverse of the considered DLT follows by letting N — +o0.

4. Numerical Results

In what follows we will show some numerical examples concerning the computation of DLTs.

Example 4.1 (Dirichlet-Laplace transform of e'T'(t)). Let us consider the umbral symbols A = {A,, = /n},

a={an = ShT‘l“ }, and the function:

f(t) = e'T(t),

whose Laguerre polynomial series approximant of order K is defined as:

M
F(t) = Z YmLm(t), (4.1)
m=0

with:

00 1
— —t —
Ym—L e ft)lm(t)dt = ———.

Hence, using Tricomi’s method, the Dirichlet-Laplace transform of f(t) with coefficients a and exponents
A can be evaluated as:

M
- 1
Fs) ~ = ) vm¥m(a;Ns), (4.2)
s
m=0
where,
+0o0 a 1 m
Yala; A s) = S 1—— . 4.3
m(@As) ;An( ) @3)

The approximated expression (4.2) can be compared against the following rigorous expansion:
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F(s) = i and (f) (Ans), (4.4)
n=1
with
£(f)(s) = J:o e SH(t)dt = lz’g_(‘?. (4.5)

Upon selecting the expansion order M = 200, one can readily verify that the approximant f(t) in (4.1) is
characterized by the distribution shown in Figure 1. As it can be noticed from the cut sections for w =
Im{s} =1 and o = Re{s} = 5 reported in Figures 2 and 3, respectively, the agreement between the Dirichlet-
Laplace transform F(s) defined by (4.4) and the relevant Tricomi’s approximation F(s) as calculated by (4.2)
is very good. To this end, please note that the number of terms retained in the expansions (4.3) and (4.5)
has been limited to N = 100, that is sufficient to yield a pretty accurate representation of the kernel of the
transform:

o0
Alg; N\ x) = Z ane X,
n=1

as it readily follows from the visual inspection of Figure 4.

0.8 \\ ; f(t)

aal \ 1 ()

0.4 .

0.2 R T——

Figure 1: Distribution of the function f(t) = e' I'(t) as compared to the relevant Laguerre polynomial series approximant f(t) of
order M = 200.
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Figure 2: Magnitude (a) and argument (b) of the Dirichlet-Laplace transform with coefficients a = {an = S“‘T“} and exponents
A ={An = v/} relevant to f(t) = e' I'(t) as a function of the complex variable s = 0 +iw for w = 1 when computed using the
rigorous integral expression F(s) and the corresponding Tricomi’s series approximant F(s) of order M = 200.
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Figure 3: Magnitude (a) and argument (b) of the Dirichlet-Laplace transform with coefficients a = {an = Si?ln} and exponents
A = {An = y/n} relevant to f(t) = e' T'(t) as a function of the complex variable s = o +iw for ¢ = 5 when computed using the
rigorous integral expression F(s) and the corresponding Tricomi’s series approximant F(s) of order M = 200.
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= 0010
——— N=100

N=200

0.001 =

X

Figure 4: Distribution of the kernel Ay (a; A; x) relevant to the Dirichlet-Laplace transform with coefficients a = {an = SinTn} and
exponents A = {A,, = y/n} for different truncation orders N of the corresponding series expansion representation.

Example 4.2 (Dirichlet-Laplace Transform of Jo (2v/'t)). Let us consider the umbral symbols A = {A, =
log(n+1)}, a ={an, = e ™arctann}, and the function:

() = Jo (2v1),

whose Laguerre polynomial series approximant of order K is defined as:

)= vYmLm(t), (4.6)
with

&0 1
Ym = J e Yt L (t)dt = —.
0 em!

Hence, using Tricomi’s method, the Dirichlet-Laplace transform of f(t) with coefficients a and exponents
A can be evaluated as:

~ 1M
Fs) =~ < mz_ovm‘i’m(a, As), (4.7)
where,
W, (@A;s) = f““ (1—1>m. (4.8)
= An Ans

The approximated expression (4.7) can be compared against the following rigorous expansion:
F(s) =) anl(f) (Ans), (4.9)
n=1

with
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00 —1/s
£ (f) (s) :L e St (t)dt = & : . (4.10)

Upon selecting the expansion order M = 100, one can readily verify that the approximant f(t) in (4.6)
is characterized by the distribution shown in Figure 5. As it can be noticed from the cut sections for
w = Im{s} = 1 and o0 = Re{s} = 1 reported in Figures 6 and 7, respectively, the agreement between
the Dirichlet-Laplace transform F(s) defined by (4.9) and the relevant Tricomi’s approximation F(s) as
calculated by (4.7) is excellent. To this end, please note that the number of terms retained in the expansions
(4.8) and (4.10) has been limited to N = 100, that is sufficient to yield a pretty accurate representation of
the kernel of the transform

Ala;hx) =) ane ™,
n=1

as it readily follows from the visual inspection of Figure 8.

, / —
I 1 T A W A o

- NN R R RN L L
0 50 100 150 200 250 300
t

Figure 5: Distribution of the function f(t) = Jo (2\/{) as compared to the relevant Laguerre polynomial series approximant f(t)
of order M = 100.
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arg{F(o+)}

/ arg{F(o+))}
-0.15} / B

—020F | / i

(b)

Figure 6: Magnitude (a) and argument (b) of the Dirichlet-Laplace transform with coefficients a = {an = e~ arctann} and
exponents A = {A, = log(n + 1)} relevant to f(t) = Jo (2V/t) as a function of the complex variable s = 0 +iw for w = 1 when
computed using the rigorous integral expression F(s) and the corresponding Tricomi’s series approximant F(s) of order M = 100.
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Figure 7: Magnitude (a) and argument (b) of the Dirichlet-Laplace transform with coefficients a = {a, = e ™ arctann} and
exponents A = {An = log(n + 1)} relevant to f(t) = Jo (2\/{) as a function of the complex variable s = o +iw for 0 = 1 when
computed using the rigorous integral expression F(s) and the corresponding Tricomi’s series approximant F(s) of order M = 100.
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0.100 4
0.010
0.001 |- 4

N=100
4 N=200

A(@;A;x)

Figure 8: Distribution of the kernel Ay (a;A;x) relevant to the Dirichlet-Laplace transform with coefficients a = {an =
e "arctann} and exponents A = {An = log(n + 1)} for different truncation orders N of the corresponding series expansion
representation.

Example 4.3 (Dirichlet-Laplace Transform of e™!). Let us consider the umbral symbols A = {A, = n?},

a={an =4 exp 275“1 }, and the function:

nZ
f(t) = e,
whose Laguerre polynomial series approximant of order K is defined as:
M
flt) =) ymLm(t), (4.11)
m=0
with
—t 1 1
ym:J e f(t)Ln(t)dt = — <1—|—> .
0 Tt us

Hence, using Tricomi’s method, the Dirichlet-Laplace transform of f(t) with coefficients a and exponents
A can be evaluated as

M
3 1
F(s) == ) ym¥m(a;A;s), (4.12)
S m=0
where,
+0o0 a 1 m
o) — -n -
Yl As) =) o <1 Aﬂg) . (4.13)
n=1

The approximated expression (4.12) can be compared against the following rigorous expansion
F(s) =) ank(f)(Ans), (4.14)
n=1

with

(4.15)
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Upon selecting the expansion order M = 200, one can readily verify that the approximant f(t) in (4.11)
is characterized by the distribution shown in Figure 9. As it can be noticed from the cut sections for
w =Im{s} =1 and o = Re{s} = 5 reported in Figures 10 and 11, respectively, the agreement between the
Dirichlet-Laplace transform F(s) defined by (4.14) and the relevant Tricomi’s approximation F(s) as calcu-
lated by (4.12) is excellent. To this end, please note that the number of terms retained in the expansions
(4.13) and (4.15) has been limited to N = 100, that is sufficient to yield a pretty accurate representation of
the kernel of the transform:

o0
Alg;Nx) =) ane ™%,
n=1

as it readily follows from the visual inspection of Figure 12.

20

Ift)l
0]

05 —

0.0

(a)

arg{f(t)}
arg{F (1)}

(b)

Figure 9: Magnitude (a) and argument (b) of the function f(t) = el a5 compared to the relevant Laguerre polynomial series
approximant f(t) of order M = 200.
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Figure 10: Magnitude (a) and argument (b) of the Dirichlet-Laplace transform with coefficients a = {an
exponents A = {A, = n?} relevant to f(t) = e

it

= % exp 23} and
as a function of the complex variable s = 0 +iw for w = 1 when computed
using the rigorous integral expression F(s) and the corresponding Tricomi’s series approximant F(s) of order M = 200.
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0.5

00 arg{F(5+jw)}
arg{F(5+jw)}
o8| ]
-10F .
-30 =20 -10 0 10 20 30
(b)
Figure 11: Magnitude (a) and argument (b) of the Dirichlet-Laplace transform with coefficients a = {an = % exp %} and

exponents A = {A,, = n?2} relevant to f(t) = e as a function of the complex variable s = 0 +iw for 0 = 5 when computed using
the rigorous integral expression F(s) and the corresponding Tricomi’s series approximant F(s) of order M = 200.
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10~
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Figure 12: Distribution of the kernel Ay(a;A;x) relevant to the Dirichlet-Laplace transform with coefficients a = {an =
# exp ngm} and exponents A = {A, = n?} for different truncation orders N of the corresponding series expansion repre-

sentation.

5. Conclusion

In preceding articles [5, 12] we have shown that generalized forms of the Laplace transform can be
defined thorough the Laguerre-type exponentials on, in more general form, by exploiting the Blissard
problem, which is connected with Bell’s polynomials.

In this article a wider generalization is obtained by considering as a kernel a general Dirichlet series
subject to suitable conditions. The use of Tricomi’s method reduces the transform to a linear combination
of classical LTs. This property allows to define the inverse of the DLTs by combining the inverse of classical
LTs.

The effectiveness of the proposed methodology has been shown by several test cases involving com-
plex functions typically encountered in Mathematical Physics.
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