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Abstract
In this paper, we study the qualitative dynamical analysis, routes to chaos and the coexistence of attractors in a four-well

φ8-generalized Liénard oscillator under external and parametric excitations. The local analysis of the autonomous system reveals
saddles, nodes, spirals or centers for appropriate choice of stiffness and damping coefficients. The existence of a Hopf bifurcation
is proved during the stability analysis of the equilibrium points. The routes to chaos and the prediction of coexisting attractors
have been investigated numerically by using the fourth order Runge-Kutta algorithm. The bifurcation structures obtained show
that the system displays a rich variety of bifurcation phenomena, such as symmetry breaking, symmetry restoring, period-
doubling, period windows, period-m bubbles, reverse period windows, antimonotonicity, intermittency, quasiperiodic, and
chaos. In addition, remerging chaotic band attractors and remarkable routes to chaos occur in the system. Further, it is found
that the system presents various coexistence of two attractors as well as the monostability and bistability phenomena. On the
other hand, for large amplitude of the parametric excitation and with ω = 1, the coexistence of asymmetric periodic bursting
oscillations of different topologies takes place in the system. It has also been shown numerically that for appropriate values of
system parameters and initial conditions, the presented system can exhibit up to five types of coexisting multiple attractors.
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1. Introduction

Physical processes are obviously nonlinear in nature. To this end, a better understanding of these
processes requires to take into account during the mathematical modeling, the fundamental nonlinearities
of the physical systems. Thus, many physical systems are represented by nonlinear ordinary differential
equations. Due to inherent nonlinearities, the nonlinear dynamical systems display a rich variety of
different long-term behaviors, such as fixed points, limit cycles, quasiperiodic, and chaotic responses.
One of the classical equations often used to describe these behaviors besides chaotic behavior is the
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Liénard-type equation of the form:
ẍ+ f(x)ẋ+ g(x) = 0, (1.1)

where a dot represents the derivative with respect to time t. f and g are arbitrary functions of x.
The Liénard equation (1.1) plays an important role in many areas of physics, biology, mechanics,

chemistry, seismology, cosmology and engineering [3, 4, 8, 23]. In view of importance of Liénard-type
equation (1.1), several researchers investigated the mathematical properties of this equation from both
mathematical and physical points of view, and its study remains up to now an active field of research.
For example, Han and Romanovski [5] considered a polynomial Liénard system of arbitrary degree on
the plane, and developed a new method to obtain a lower bound of the maximal number of limit cycles.
Sun [26] obtained more limit cycles by considering a Liénard system of type (7,n) with n� 6. Recently,
Yang and Ding [31] investigated limit cycles of a class of Liénard systems with restoring forces of seventh
degree. Recently again, Wu et al. [30] obtained some new and better lower bounds of the maximal
number of small amplitude limit cycles of Z2-equivariant generalized Liénard systems using the method
of normal form theory. In most these studies, φ8 potential is often used. It is then important to point
out that, the Liénard system with φ8 potential presents substantial and additional difficulties in the
qualitative analysis of perturbed systems. Recently, the dynamics study of Liénard-type system (1.1)
driven by parametric or external periodic excitation has received considerable attention. For instance,
Maccari [18] used an asymptotic perturbation method based on Fourier expansion and time rescaling
to calculate an approximate solution of a generalized Van der Pol-Duffing oscillator in resonance with a
periodic excitation. The same method has been applied in [19] to a parametrically excited Liénard system.
On the other hand, Rayleigh-Liénard oscillator is also considered as generalization of the Liénard system
(1.1) [6]. To that end, Maccari [20] investigated a bifurcation analysis of parametrically excited Rayleigh-
Liénard oscillator. An asymptotic perturbation method based on Fourier expansion and time rescaling
has been used to calculate an approximate analytic solution. Moreover, Floquet’s theory has also been
used to determine the stability of the periodic solutions. Miwadinou et al. [22] investigated chaotic
motions in Rayleigh-Liénard oscillator with external and parametric periodic excitations by using the
Melnikov method. Recently, Kpomahou et al. [12] studied regular and chaotic oscillations in a modified
Rayleigh-Liénard system under parametric excitation. But it is important to underline that, the chaotic
dynamics of a forced Liénard system (1.1) with φ8 potential is very few studied in the open literature.
One can recently notice that, Koudahoun et al. [10] investigated the chaotic dynamics of an extended
forced Duffing oscillator with double-well φ8 potential. More recently, Miwadinou et al. [21] studied the
stability and chaotic dynamics of a forced φ8-generalized Liénard oscillator. The obtained results by these
authors have shown in the nonlinear dynamics study of perturbed systems, the existence of a symmetric
four-well potential following an appropriate choice of stiffness parameters. Speaking of the four-well
potential, Warminski [29] showed that the nonlinear systems with self, parametric and external excitations
can vibrate chaotically and hyperchaotically when the amplitude of parametric excitation becomes large
enough. Thus, the dynamic response of a nonlinear oscillator with φ8 potential can provide in certain
conditions more information than φ6 and φ4 potentials since it is well known that the dynamics of φ6 is
more rich than φ4 and φ2 [15]. Therefore in the fields of mathematical physics and structural mechanics,
chaotic dynamics for nonlinear oscillators with four-well potential may be investigated numerically for a
better understanding of the nonlinear behavior of these oscillators types.

Another interesting characteristic found in nonlinear dynamical systems is the coexistence of multiple
attractors in some regions of parameter space [2, 24, 27]. Note that multiple attractors coexisting as
a typical bifurcation lead to unpredictable behavior of trajectories and are considered as a source of
unpredictability of a nonlinear system [2]. Thus, it affects the performance of the system to some extent [1,
9]. However, the coexistence of attractors offers another importance to nonlinear dynamical systems. For
example, it provides multiple optional steady states for a system to respond to different needs. In other
word, it gives rise to the possibility of hysteresis. This later phenomenon is encountered in mechanical
systems [16], electromagnetism [28], chemical kinetics [25], nonlinear optics [17], and so on. Contrary to
chaos that has been widely studied through a variety of nonlinear oscillators, the study of coexistence of
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attractors is still in its infancy for nonlinear dissipative systems. The prediction of this phenomenon in
some nonlinear oscillators has been recently made in open literature [7, 11, 13, 14]. However, the transition
of chaos and coexisting attractors in a parametrically and self excited generalized Liénard oscillator with
asymmetric four well potential have not been yet performed.

Our objective here is to explore dynamical analysis and coexisting attractors in a generalized Liénard
oscillator with asymmetric four-well potential driven by parametric and external excitations. In order to
attain our objective, we first present the description of the model and we perform the qualitative analysis
of the autonomous system (Sect. 2). Second, we investigate numerically the transitions from regular to
chaotic motions as well as the coexistence of attractors by using the fourth-order Runge-Kutta algorithm
(Sect. 3). Finally we end with a conclusion (Sect. 4).

Figure 1: Potential function of the unforced and undamped system given by (2.5) exhibiting the effect of: (a) α1 and (b) α2. The
used basic values are: α0 = 2,α1 = 0.68, and α2 = −0.2.

Figure 2: Phase portraits of the generalized Liénard system (2.2) with the parameters of Table 1.

2. Description of the model and qualitative analysis of the autonomous system

2.1. Description of the model
In this paper, we investigate the qualitative analysis and dynamical transitions to chaos in an asym-

metric four-well φ8-generalized Liénard oscillator driven by external and parametric excitations. The
model in question is defined as follows:

ẍ+ (x3 − x)(x2 −α0)(α1x
2 +α2x−α0) + (β0 +β1x

2 +β2x
4 +β3x

6 +β4x
8)ẋ = F(1 + ηx) cosωt, (2.1)
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where βi(i = 0, 4),αj(j = 0, 2), F,η and ω are constant parameters. Physically, βi and αj represent the
damping and stiffness coefficients, respectively. F and η denote the amplitude of external and parametric
periodic forcing respectively and, ω is the corresponding frequency. When F = α2 = 0 and α1 = 1, the
corresponding model has been studied by Sun [26] and the obtained results have shown that this system
admits 13 limit cycles with 0 < α0 < 4. So, the study of (2.1) is then important since it contains some
particular cases already studied in the open literature.

At present, we perform in the following subsection, the qualitative analysis of the autonomous system.

2.2. Qualitative analysis of the autonomous system
It is well known that the fixed points play a key role on the dynamics of nonlinear systems. In other

word, the study of the fixed points bifurcation allows us to know for a dynamical system the existence
of certain complex dynamics. Thus, we derive in this paragraph the fixed points corresponding to the
system (2.1) when it is unperturbed and we analyze their asymptotic stability by using the first Lyapunov
technique.

If we let F = 0, (2.1) is considered as an unperturbed system and can be rewritten as

ẋ = y, ẏ = −(x3 − x)(x2 −α0)(α1x
2 +α2x−α0) − (β0 +β1x

2 +β2x
4 +β3x

6 +β4x
8)y. (2.2)

From (2.2), by posing ẋ = ẏ = 0, we find the following results.

Lemma 2.1. The following statements are true for α0 ∈ R∗+ \ {1}.

• If ∆ = α2
2 + 4α0α1 > 0, then system (2.2) has seven equilibrium points such as: P1(0, 0),P2,3(±1, 0),

P4,5(±
√
α0, 0) and P6,7

(
−α2±

√
∆

2α1
, 0
)

.

• If ∆ = 0, α1 < 0 and α0 + α1 6= 0, then the system (2.2) admits six equilibrium points: P1,P2,3, P4,5 and
P6(x

∗
6 , 0), with x∗6 = −

√
−α0
α1

for α2 > 0 or x∗6 =
√

−α0
α1

for α2 < 0.

• If ∆ < 0, then the system of (2.2) possess five equilibrium points such as: P1,P2,3 and P4,5.

Lemma 2.2. The following statements are true for α0 < 0.

• If ∆ > 0, then system (2.2) possess five equilibrium points: P1,P2,3 and P6,7.

• If ∆ = 0,α1 > 0 and α0 + α1 6= 0, then the system (2.2) has four equilibrium points: P1,P2,3, and P6(x
∗
6 , 0),

with x∗6 = −
√

−α0
α1

for α2 > 0 or x∗6 =
√

−α0
α1

for α2 < 0.

• If ∆ < 0, then the system (2.2) admits three equilibrium points such as: P1 and P2,3.

In order to analyze the stability of these equilibrium points, it is necessary to determine the Jacobian
matrix associated to the system (2.2). Thus, this matrix is given by:

J(x,y) =
(

0 1
−f ′(x)y− g ′(x) −f(x)

)
,

where the prime ( ′) denotes the differentiation with respect to x. Evaluating of this matrix at equilibrium
point Pi(x∗i , 0) gives

J(x∗i , 0) =
(

0 1
−g ′(x∗i ) −f(x∗i )

)
,

with

g ′(x∗i ) = 7α1x
∗6
i + 6α2x

∗5
i − 5(α0 +α1 +α1α0)x

∗4
i − 4α2(1 +α0)x

∗3
i + 3α0(α1 +α0 + 1)x∗2i + 2α0α2x

∗
i −α

2
0.

The stability process depends on the sign of eigenvalues λ of (2.2) which are given through the following
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characteristic equation:
λ2 + f(x∗i )λ+ g

′(x∗i ) = 0, (2.3)

Then, from (2.3), the eigenvalues can be written as follows:

λ1,2 =
1
2

[
−f(x∗i )±

√
| Q(x∗i ) |

]
, (2.4)

where Q(x∗i ) = f
2(x∗i ) − 4g ′(x∗i ).

From (2.4), the following propositions are hold.

Proposition 2.3. For each equilibrium point Pi(x∗i , 0),i = 2, 7, we have the following statements for g ′(x∗i ) > 0.

• If Q(x∗i ) > 0, then the equilibrium points are nodes for f(x∗i ) >
√
Q(x∗i ) or saddles for f(x∗i ) <

√
Q(x∗i ).

• If Q(x∗i ) = 0, then the equilibrium points are saddles.

• If Q(x∗i ) < 0, then the equilibrium points are spirals.

Proof. For the case Q(x∗i ) > 0, we obtain from (2.4) the real eigenvalues having the form:

λ1,2 =
1
2

[
−f(x∗i )±

√
Q(x∗i )

]
.

This case corresponds to nodes if f(x∗i ) >
√
Q(x∗i ) and to saddles if f(x∗i ) <

√
Q(x∗i ).

The case Q(x∗i ) = 0 gives also the real eigenvalues of the form: λ1,2 = ±
√
g ′(x∗i ). Hence we have

saddles for this case. The case Q(x∗i ) < 0 gives from (2.4) two complex conjugate eigenvalues of the form:
λ1,2 = 1

2

[
−f(x∗i )± j

√
−Q(x∗i )

]
with j2 = −1. This case corresponds to spirals.

Proposition 2.4. For each equilibrium point Pi(x∗i , 0),i = 1, 7, we have the following statement for g ′(x∗i ) < 0.

• If Q(x∗i ) > 0, then the equilibrium points are only saddles.

Proof. For this case, Q(x∗i ) > 0. Thus, we get from (2.4) λ1,2 = 1
2

[
−f(x∗i )±

√
Q(x∗i )

]
. This leads us only to

the existence of saddles because f(x∗i ) <
√
Q(x∗i ).

At present, we study the case of the unforced and undamped system. For this system, we replace in
the previous relations the damping coefficients βi by zero. Thus, the system (2.2) becomes

ẋ = y, ẏ = −(x3 − x)(x2 −α0)(α1x
2 +α2x−α0). (2.5)

The system (2.5) corresponds to an integrable Hamiltonian system with a potential function

V(x) =
α1

8
x8 +

α2

7
x7 −

α0 +α1(1 +α0)

6
x6 −

α2(1 +α0)

5
x5 +

α0(1 +α0 +α1)

4
x4 +

α0α2

3
x3 −

α2
0

2
x2

and the associated Hamiltonian function is given by

H(x,y) =
1
2
y2 +

α1

8
x8 +

α2

7
x7 −

α0 +α1(1 +α0)

6
x6 −

α2(1 +α0)

5
x5 +

α0(1 +α0 +α1)

4
x4 +

α0α2

3
x3 −

α2
0

2
x2.

For this system, we have the following results.

Proposition 2.5. For each equilibrium point Pi(x∗i , 0),i = 1, 7, we have the following statements.

• If g ′(x∗i ) < 0, then, the equilibrium points are saddles.

• If g ′(x∗i ) > 0, then the equilibrium points are centers and system (2.5) has a Hopf bifurcation when β0 passes
through the critical value β0H = −Σ4

n=0βnx
∗2n
i .

Proof. From (2.3) by posing f(x∗i ) = 0, we have for each equilibrium Pi(x
∗
i , 0),i = 1, 7, the following

eigenvalues:

λ1,2 = ±
√
−g ′(x∗i ). (2.6)

Therefore, from (2.6), the equilibrium points are saddles if and only if g ′(x∗i ) < 0. In this case, the
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eigenvalues of the Jacobian matrix are real numbers of different sign. However, when g ′(x∗i ) > 0, we
obtain the following relationship

λ1,2 = ±j
√
g ′(x∗i ).

Then, the equilibrium points verifying this condition are centers. Now, replacing λ = ±j
√
g ′(x∗i ) into (2.3)

we obtain β0H = −Σ4
n=0βnx

∗2n
i . Second, differentiating both sides of (2.3) with respect to β0 gives

dλ

dβ0
= −

λ

f(x∗i ) + 2λ
.

Then,

Re

(
dλ

dβ0
|
β0=β0H,λ=±j

√
g ′(x∗i )

)
= −

1
2
6= 0.

Therefore, the condition for a Hopf bifurcation to occur is satisfied.

Since we are interested to the case of a four-well potential, then we fix the parameter values to be
α0 = 2,α1 = 0.68 or 0.6 and α2 = −0.2 throughout this paper. The potential function of the system given
by (2.5) illustrating the influence of α1 and α2 is shown in Figure 1. From this figure, we notice that when
α1 decreases, the depth of right well increases. The same observation is made for negative values of α2.
However, for positive values of α2, the depth of left well increases as α2 increases.

We now summarize in Table 1, the stability of fixed points of the unforced and damped system (2.2)
for a few choices of damping coefficients. The stiffness parameters leading to an asymmetric four-well
potential are kept constant. The corresponding phase portraits plotted in Figure 2 (a)-(d) confirm the
obtained analytical results.

Table 1: Stability of fixed points of the unforced and damped system (2.2). The following parameters are kept constant:
α0 = 2,α1 = 0.68,α2 = −0.2,β2 = 0.06, and β4 = 0.005.

Choice of parameters Equilibrium points Eigenvalues Type of equilibrium Stability

(a) β0 = 0.06,β1 = −0.7,β3 = 0.02

P1(0, 0) -2.0302, 1.9702 saddle unstable
P2(−1, 0) −0.4225± 1.4358j focus stable
P3(1, 0) 0.2775± 1.7213j focus unstable
P4(−

√
2, 0) -2.0328, 0.7028 saddle unstable

P5(
√

2, 0) -1.6236, 2.2736 saddle unstable
P6(−1.5742, 0) −0.8110± 1.3950j focus stable
P7(1.8683, 0) 0.0262± 4.0289j focus unstable

(b) β0 = 1.5,β1 = −0.7,β3 = 0.02

P1(0, 0) -2.8860, 1.3860 saddle unstable
P2(−1, 0) −1.1425± 0.9668j focus stable
P3(1, 0) −0.4425± 1.6865j focus stable
P4(−

√
2, 0) 3.2144, 0.4444 saddle unstable

P5(
√

2, 0) -2.3565, 1.5665 saddle unstable
P6(−1.5742, 0) −1.5310± 0.5106j focus stable
P7(1.8683, 0) −0.6938± 3.9695 focus stable

(c) β0 = 0.06,β1 = 1,β3 = 0.02

P1(0, 0) -2.0302, 1.9702 saddle unstable
P2(−1, 0) 0.4275± 1.4343j focus unstable
P3(1, 0) −0.5725± 1.6469j focus stable
P4 = (−

√
2, 0) -0.7733, 1.8475 saddle unstable

P5(
√

2, 0) -2.9891, 1.2349 saddle unstable
P6(−1.5742, 0) 0.5271± 1.5254j focus unstable
P7(1.8683, 0) −1.549± 3.7147j focus stable

(d) β0 = 0.06,β1 = −0.7,β3 = 0.2

P1(0, 0) -2.0302, 1.9702 saddle unstable
P2(−1, 0) −0.5125± 1.4062j focus stable
P3(1, 0) 0.1875± 1.7334j focus unstable
P4(−

√
2, 0) -2.5995, 0.5496 saddle unstable

P5 = (
√

2, 0) -1.9566, 1.8866 saddle unstable
P6(−1.5742, 0) −1.3637± 0.8631j focus stable
P7(1.8683, 0) −1.0705± 3.8849j focus stable
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3. Bifurcation and chaos

In this section, we investigate numerically by using the fourth-order Runge-Kutta algorithm, the even-
tual transitions to chaos and the coexistence of attractors when the control parameter varies. For this,
the tools as bifurcation diagram, Lyapunov exponent, time series, Poincaré map and phase portrait are
used to quantify the presence of regular and irregular motions in our system. To this end, for a bet-
ter understanding of the effects of the system parameters on the dynamical behavior of our system, we
first investigate the dynamics of the presented system in absence of dissipation and parametric excitation
forces. Thus, we set η = βi = 0 and we consider a set of sample parameter values α0 = 2, α1 = 0.68,
α2 = −0.2 and ω = 1 to plot the bifurcation diagram and the corresponding Lyapunov exponent versus
the amplitude of the external excitation with the initial conditions x0 = 0.5 and y0 = 0.5 (see Figure 3).
From this figure, we note that the chaotic oscillations are more abundant than periodic oscillations. More-
over, the geometric shape of chaotic attractors differs as shown in Figure 4. However, the geometrical
complexity of chaotic attractors is identical since the Kaplan-Yorke dimension calculated for F = 3 and
F = 15.69 is equal to 2.

Second, taking into account the dissipation and parametric excitation forces, that is β0 = β2 = 0.06,
β1 = −0.7, β3 = 0.02,β4 = 0.005 and η = 0.00025, we observe that the periodic oscillations are more
important than chaotic oscillations (see Figure 4). One can clearly see through this figure that for F = 3
and F = 15.69, the presented system displays chaotic oscillations. Thus, the Kaplan-Yorke dimension
that characterizes the geometric complexity of chaotic attractors is equal to 1.405 and 1.1031, respectively.
Therefore, we can say that the dissipation and parametric excitation forces reduce the geometrical com-
plexity of chaotic attractors. On the other hand, we note that the system (2.1) displays a rich variety of
bifurcation phenomena, such as symmetry breaking, symmetry restoring, period doubling, period win-
dows, reverse period bifurcations, antimonotonicity, intermittency, quasiperiodic, chaos and so on (see
Figures 5 and 6). In addition, period-3 motion, period-5 motion, period-m windows and period bubbling
routes to chaos occur in the system. Further, remerging chaotic band attractors, monostable oscillations,
bistable oscillations as well as the coexistence of different attractors occur in the system. Figure 7 illus-
trates some attractors exhibited by the bifurcation diagrams of Figure 5 for several different values of F.
The effect of parametric excitation amplitude, η on the bifurcation diagrams of Figure 5 is investigated
and the obtained results are presented in Figure 8. Through this figure, we notice that the system presents
bistable chaotic oscillations for F = 0.42. However for F > 0.42, the coexistence of asymmetric periodic
bursting oscillations appears in the system. These observations are confirmed by the phase portraits and
its corresponding time series shown in Figure 9 for three different values of F. We can finally conclude
that with these system parameters, chaotic oscillations disappear and the periodic bursting oscillations
take place in the system for large η. In other word, the amplitude of the parametric excitation can be used
to control the chaotic oscillations in the system.

When β1 is used as control parameter with αl = 0.6, ω = 4, F = 4, and η = 0.25, we also notice
through Figure 10 that the domain where chaotic oscillations appear decreases. Moreover, the system
exhibits various bifurcations, including symmetry restoring, symmetry breaking, period-doubling, and
reverse periodic windows. On the other hand, antimonitonicity and period-1 orbit to chaos occur in the
system. Further, the coexistence of attractors, bistable and monostable oscillations appear in the system.
These phenomena are illustrated in Figure 11 for several different values of β1.

When ω = 4, η = 0.00025 and F = 7.5, the system presents remarkable routes to chaos such a
period-1 orbit, period-3 orbit and period bubble to chaos (see Figure 12). Moreover, period windows and
reverse period windows occur in the system when β1 evolves. Various coexisting behaviors of asymmetric
attractors also appears in the system. For example, when β1 = 0.05, left-period-2 orbit and right-period-3
orbit coexist. As β1 = 0.1, left-period-1 orbit and right-period-3 orbit coexist. On the other hand, for
β1 = 0.25, left-period-1 orbit coexists with right-chaotic attractor. In addition, we observe that left-period-
1 orbit coexists with right-period-4 orbit when β1 = 0.35.

For β3 = 1.2, 1.25, and several sets of the initial conditions, we found that the presented system
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displays multiple coexisting attractors’ behaviors for certain values of η (see Figures 13 and 14). In
Figure 13 (a), left-period-1 limit cycle of small size coexists with small right-period-1 limit cycle and large
right-period-2 limit cycle. In Figure 13 (b), two left-chaotic attractors of different topologies coexist with
left-period-1 limit cycle and right-period-1 limit cycle all of them of small size. Figure 13 (c) shows the
coexistence of left-period-1 limit cycle of small size, right-period-1 limit cycle of small size with period-4
limit cycle. In Figure 14 (a), the presented system exhibits the coexistence of left-point, left-period-1 limit
cycle of small size, larger right-period-1 limit cycle and small right-period-1 limit cycle. However, Figure
14 (b) presents the coexistence of small left-period-1 limit cycle, left-period-2 limit cycle with larger right-
period-4 limit cycle and small right period-1 limit cycle. In Figure 14 (c), small left-period-1 limit cycle,
four larger right-chaotic attractor of different topologies coexist with small left period-1 limit cycle.

Therefore, we can conclude that the presented system can exhibit up to five coexisting multiple attrac-
tors’ behaviors for appropriate values of system parameters and initial conditions.

Figure 3: Bifurcation diagram and its corresponding Lyapunov exponent versus the amplitude of the external excitation F with
α0 = 2,α1 = 0.68,α2 = −0.2,ω = 1,βi = 0, and η = 0.

Figure 4: Phase portraits and its Poincaré maps of the generalized Liénard system (2.1) with the parameters of Fig. 3 for two
different values of F.
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Figure 5: Bifurcation diagrams and its corresponding Lyapunov exponents versus the amplitude of the external excitation F. The
specific initial conditions are: (0.5, 0.5) (blue) and (−0.5,−0.5) (red). The used parameter values are: α0 = 2,α1 = 0.68,α2 =
−0.2,ω = 1,β0 = β2 = 0.06,β1 = −0.7,β3 = 0.02, β4 = 0.005 and η = 0.00025.

Figure 6: Enlargement of Fig. 5 in the range: (a) 2.1 6 F 6 2.78 and (b) 2.79 6 F 6 2.88.

Figure 7: Various phase portraits showing monostable oscillations, bistable oscillations, and coexisting attractors for different
values of F with the parameters of Fig. 5.
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Figure 8: Bifurcation diagrams in the (F− x) plane with the parameters of Fig. 5 for η = 12.5.

Figure 9: Phase portraits and its corresponding time series illustrating bistability phenomenon and coexisting asymmetric
periodic attractors for three different values of F with the parameters of Fig. 8.

Figure 10: Bifurcation diagrams and its corresponding Lyapunov exponents in the (β1 − x) plane with α1 = 0.6,ω = 4, F = 4,
and η = 0.25. The other parameter values are kept constant.
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Figure 11: Various phase portraits exhibiting bistable oscillations and coexisting asymmetric attractors for some values of β1
with the parameters of Fig. 10.

Figure 12: Bifurcation diagrams and its corresponding Lyapunov exponents in the (β1 − x) plane with the parameter values of
Fig. 10 for F = 7.5 and η = 0.00025.

Figure 13: Phase portraits showing coexisting of multiple attractors in generalized Liénard system for different values of η and
initial conditions: (a) η = 1.75; (b) η = 2 and η = 2.5. The other parameters values of Fig. 10 are kept constant with β3 = 1.2 and
F = 2.5.
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Figure 14: Phase portraits exhibiting coexisting of multiple attractors in generalized Liénard system for different initial conditions
and certain values of η: (a) η = 0.75; (b) η = 1.5 and (c) η = 2. The other parameters values of Fig. 10 are kept constant with
β3 = 1.25 and F = 2.5.

4. Conclusion

In this paper, we have investigated the problem of stability of fixed points, transitions to chaos and
the coexistence of attractors in an asymmetric four-well φ8-generalized Liénard oscillator driven by ex-
ternal and parametric excitations. The local stability analysis of fixed points of the autonomous system
has revealed saddles, nodes, spirals or centers for appropriate choice of stiffness and damping parame-
ters. The existence of a Hopf bifurcation is demonstrated during the stability analysis of the equilibrium
points. The chaotic dynamics and coexisting attractors of our system have been examined numerically by
using the fourth-order Runge-Kutta algorithm. When the external and parametric excitations are taken
into account, the system exhibits for ω = 1, complex dynamical behaviors, such as symmetry break-
ing, symmetry restoring, standard period-doubling, period windows, period-m bubbles, reverse period
bifurcations, antimonotonicity, intermittency, quasiperiodic and chaos. In addition, the system presents
remerging chaotic band attractors and various coexistence of attractors. Further, monostable and bistable
phenomena occur in the system as well as remarkable routes to chaos. It is also found that when ω = 1
and for large amplitude of the parametric excitation, the coexistence of asymmetric periodic bursting
oscillations of different topologies takes place in the system. On the other hand, it has been found that
for ω = 4, the chaotic region decreases for appropriate values of F and η. In this case of oscillation, the
considered system exhibits coexisting behaviors of asymmetric attractors. Moreover, for specific initial
conditions, it has also been numerically shown that the generalized Liénard system displays up to five
types of coexisting multiple attractors.
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