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Abstract
A nonlinear transmission line (NLTL) model is very essential tools in understanding of propagation of electrical solitons

which can propagate in the form of voltage waves in nonlinear dispersive media. These models are often formulated using
nonlinear partial differential equations. One of the basic tools available to study these equations are numerical methods such
as finite difference method, finite element method, etc, have been developed for nonlinear partial differential equations. These
methods require a great amount of time and memory due to the discretization and usually the effect of round-off error causes
loss of accuracy in the results. So in this paper, we use one of the most famous analytical methods the Lie group analysis due
to Sophus Lie. One of the advantages of this approach is that requires only algebraic calculations. The main aim of this study
is to explore the nonlinear transmission line model with arbitrary capacitor’s voltage dependence, through the use of Lie group
classification, we show that the specifying form of arbitrary capacitor’s voltage are power law nonlinearity, exponential law
nonlinearity and constant capacitance. The exact solutions and similarity reductions generated from the symmetries are also
provided. Furthermore, translational symmetries were utilized to find a family of traveling wave solutions via the tanh-method
of the governing nonlinear problem.

Keywords: Lie group classification, non-linear line transmission, traveling wave solutions.

2020 MSC: 76M60, 35C07, 35C08.

©2022 All rights reserved.

1. Introduction

Starting from the papers of Asfari et al. [1], El-borai et al. [6], and Mostafa [13], concerned a nonlinear
transmission line (NLTL) model, we apply the Lie group classification method (see [4, 9, 14, 15]) to inves-
tigate the symmetry groups of the governing equations. The NLTLs are very convenient tools to study
the propagation of electrical solitons which can propagate in the form of voltage waves in nonlinear dis-
persive media. These transmissions (see [5, 11, 16]) are powerful tools involved in nonlinear transmission
phenomena. A transmission line is a specialized medium or other structure designed to carry alternating
current of radio frequency, that is, currents with a frequency high enough that their wave nature must be
taken into account. Transmission lines are used for purposes such as connecting radio transmitters and
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receivers with their antennas, distributing cable television signals, computer network connections and
high speed computer data buses.

For the large applications of this method in engineering and physics, many authors (see [2, 3, 7, 8])
explained the applications of Lie symmetries to partial or fractional partial differential equations.

The NLTL model used in this work is the same as given by [6], with inductors l, and voltage dependent
capacitors, c(V). By applying Kirchhoff current law at node n, whose voltage with respect to ground is
Vn, and applying Kirchhoff voltage law across the two inductors connected to this node, the voltages of
adjacent nodes on this NLTL are related via:

l
d

dt

(
c(Vn)

dVn

dt

)
= (Vn+1 − 2Vn + Vn−1) . (1.1)

The right-hand side of (1.1) can be approximated with partial derivatives with respect to distance x, from
the beginning of the line, assuming that the spacing between two adjacent sections is δ (i.e., xn = nδ). An
approximate continuous partial differential equation can be obtained by using the Taylor expansions of
V(x− δ), V(x), and V(x+ δ) to evaluate the right-hand side of (1.1). Assuming a small δ, and ignoring the
high order terms, we obtain

L
∂

∂t

(
C(V)

∂V

∂t

)
=
∂2V

∂x2 +
δ2

12
∂4V

∂x4 , (1.2)

where C and L are the capacitance and inductance per unit length, respectively. For clarity of the results,
we will change the variables, replacing V by u and C(V) by f(u), the equation (1.2) becomes

L
∂

∂t

[
f(u)

∂u

∂t

]
=
∂2u

∂x2 +
δ2

12
∂4u

∂x4 , (1.3)

where u is the voltage dependent variable, f(u) the capacitance, L is the inductance, and δ an arbitrary
constant.

This paper is organized as follows. Section 2 is devoted to investigate a Lie group classification of
(1.3) and to determine the classifying relations (determining equations for the arbitrary element f(u)).
Section 3 is devoted to computing the symmetry group and the reduced solutions. In Section 4, we deal
with similarity transformations of equations using symmetry group and provide all possible reduction
equations. In Section 5, we consider two cases of the capacitance function f(u), the exact traveling wave
solutions are constructed by tanh-method. Finally, the conclusion is presented in the last section.

2. Lie group classification

In this section, we perform the Lie group classification method of (1.3). Consider a one-parameter Lie
group of infinitesimal transformations acting on the independent and dependent variables of the equation
(1.3),

t→ t+ ετ(t, x,u) +O(ε2),

x→ x+ εξ(t, x,u) +O(ε2),

u→ u+ εη(t, x,u) +O(ε2),

with a small parameter ε� 1 and where τ, ξ, and η are the the unknowns infinitesimals functions of the
transformations for the independent and dependent variables, respectively. The infinitesimal generator V
associated with the above group of transformations can be written as

V = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
, (2.1)

where τ, ξ, and η are functions of t, x, and u.
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The operator (2.1) generates a one-parameter symmetry group of (1.3), if and only if the invariance
conditions holds, since the system has at most fourth-order derivatives, we prolong the infinitesimal
generator V to the fourth order in the following form

Pr(4)(V)(Eq.(1.3)) = 0.

If the vector field (2.1) forms a symmetry of (1.3), the infinitesimal generator must satisfy the following
invariance criterion given as

Pr(4)(V) = V + χ1
∂

∂ut
+ χ11

∂

∂utt
+ χ22

∂

∂uxx
+ χ2222

∂

∂uxxxx
,

where the coefficient functions of the extended infinitesimals χi, i = t, x, are explicitly given by

χ1 = Dt(η) − utDt(τ) − uxDt(ξ),
χ2 = Dx(η) − utDx(τ) − uxDx(ξ),
χ11 = Dt(χ1) − uttDt(τ) − utxDt(ξ),
χ22 = Dx(χ2) − utxDx(τ) − uxxDx(ξ),
χ222 = Dx(χ22) − utxxDx(τ) − uxxxDx(ξ),
χ2222 = Dx(χ222) − utxxxDx(τ) − uxxxxDx(ξ),

and where the operators Dt and Dx denote total derivatives with respect to t and x.
Applying the fourth order prolongation Pr(4) onto (1.3) yields the following determining equations

2Lfuutχ1 + Lfχ11 − χ22 −
δ2

12
χ2222 = 0. (2.2)

The invariance condition (2.2) results in an over-determined linear system of determining equations for
the coefficients τ, ξ, and η. Manipulation of these determining equations is very tedious. In order to
decrease the number of calculations, we take advantage of a computer algebra system to solve these set
of over-determining equations. Thus, we have obtained the following determining equations:

Det =
{
δ2fτuuuu = 0, δ2fξuuuu = 0, − 24Lf2ξu = 0, − 2δ2fτu = 0, 4δ2fτu = 0,

6δ2fτu = 0, 4δ2fτx = 0, 3δ2fτuu = 0, 4δ2fτuu = 0, 6δ2fτuu = 0,

12δ2fτuu = 0, 4δ2fτux = 0, 12δ2fτux = 0, 6δ2fτxx = 0, 4δ2fτuuu = 0,

6δ2fτuuu = 0, 12δ2fτuux = 0, 4δ2fτuuux = 0, 4δ2fξu = 0, 10δ2fξu = 0,

10δ2fξuu = 0, 15δ2fξuu = 0, 10δ2fξuuu = 0, − 24fτu + 6δ2fτuxx = 0,

24fτu + 12δ2fτuxx = 0, − 12Lf2τuu + 12Lfufτu = 0, − 12Lf2ξuu − 12Lfufξu = 0,

− 3δ2fηuu + 12δ2fξxu = 0, − 6δ2fηuuu + 24δ2fξxuu = 0, − δ2fηuuuu + 4δ2fξxuuu = 0,

6δ2fτuuxx + 12fτuu = 0, 16δ2fξux − 4δ2fηuu = 0, 6δ2fξxx − 4δ2fηux = 0,

− 12fηxx + 12Lf2ηtt − δ
2fηxxxx = 0, 24fτx + 4δ2fτxxx − 24Lf2ξt = 0,

24fξu + 18δ2fξuxx − 12δ2fηuux = 0, 12fξuu + 6δ2fξuuxx − 4δ2fηuuux = 0,

− 2δ2fτt + δ
2fuη+ 4δ2fξx = 0, 24fξux + 4δ2fξuxxx − 6δ2fηuuxx − 12fηuu = 0,

− 24Lf2ξut + 4δ2fτuxxx + 24fτux − 24Lfufξt = 0,

12fτxx + 24Lfufηt + 24Lf2ηtu − 12Lf2τtt + δ
2fτxxxx = 0,

− 24Lf2τtu + 12Lfufηu + 12Lfuufη+ 12Lf2ηuu − 12Lf2
uη = 0,

− 6fδ2ηuxx − 24fτt + 12fuη+ 4δ2fξxxx + 24fξx = 0,

δ2fξxxxx − 4δ2fηuxxx − 24fηux − 12Lf2ξtt + 12fξxx = 0
}

.
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Solving the above determining equations for arbitrary value of f, we obtain

τ = c1t, ξ = c2x, η = 0,

where c1 and c2 are arbitrary constants. Obviously, for arbitrary form of f one obtains the two dimensional
principal Lie algebra LP of (1.3), which is spanned by the following vector generators

V1 = ∂t, V2 = ∂x.

The complete Lie group classification of the nonlinear transmission line equation is showed in the follow-
ing Table 1,

∂2F

∂t2
−

δ2

12Lf0

∂4F

∂x4 −
1
Lf0

∂2F

∂x2 = 0. (2.3)

Table 1: Lie group classification: k 6= 0,− 4
3 ,−4 is constant, where F(t, x) satisfies the equation (2.3).

Case Forms of f(u) Extensions of LP
I f(u) = eu V3 = 1

2t∂t + ∂u
II f(u) = uk V3 = 1

2kt∂t + u∂u

III f(u) = u−
4
3

V3 = −2
3t∂t + u∂u

V4 = t2∂t − 3ut∂u
IV f(u) = u−4 V3 = −2t∂t + u∂u

V f(u) = f0
V3 = u∂u
V4 = F(t, x)∂u

3. Symmetry groups and symmetry reductions of different cases of equation (1.3)

In this section, we compute the corresponding one-parameter groups Gi generated by the vector Vi,
by solving the Lie equations

dt̄

dε
= τ(t, x,u),

dx̄

dε
= ξ(t, x,u),

dū

dε
= η(t, x,u),

subject to the initial conditions
t̄|ε=0 = t, x̄|ε=0 = x, ū|ε=0 = u.

By solving this system of ordinary differential equations for different cases, we obtain the one-parameter
groups Gi generated by the vector field Vi which are formulated in the second column of Table 2.

The new corresponding solutions u(i) are given. Since each Gi is a symmetry group, it implies that
if u = f(t, x) is a known solution of (1.3), then by using the above groups Gi, the corresponding new
solutions u(i) are given in the third column of the same Table 2.

4. Similarity variables and its reduction equations

In this section, we derive symmetry reductions of (1.3) associated with the vector generators Vi, by
using similarity variables and we will calculate the reduced equation; see Table 3.
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Table 2: Symmetry group and symmetry reductions for specified form of f(u).
Cases Symmetry group Symmetry reductions

Arbitrary
G1 : (t, x,u)→ (t+ ε, x,u)
G2 : (t, x,u)→ (t, x+ ε,u)

u(1) = f(t− ε, x)
u(2) = f(t, x− ε)

I
G1 : (t, x,u)→ (t+ ε, x,u),
G2 : (t, x,u)→ (t, x+ ε,u),
G3 : (t, x,u)→ (eεt, x,u+ 2ε),

u(1) = f(t− ε, x),
u(2) = f(t, x− ε),
u(3) = f(te−ε, x) + 2ε,

II
G1 : (t, x,u)→ (t+ ε, x,u),
G2 : (t, x,u)→ (t, x+ ε,u),
G3 : (t, x,u)→ (ekεt, x, e2εu),

u(1) = f(t− ε, x),
u(2) = f(t, x− ε),
u(3) = f(te−kε, x)e2ε,

III

G1 : (t, x,u)→ (t+ ε, x,u),
G2 : (t, x,u)→ (t, x+ ε,u),
G3 : (t, x,u)→ (− t

εt−1 , x,−(εt− 1)3u),
G4 : (t, x,u)→ (e−2εt, x, e3εu),

u(1) = f(t− ε, x),
u(2) = f(t, x− ε),
u(3) = −f( t

εt+1 , x)(εt− 1)3,
u(4) = f(te2ε, x)e3ε,

IV
G1 : (t, x,u)→ (t+ ε, x,u),
G2 : (t, x,u)→ (t, x+ ε,u),
G3 : (t, x,u)→ (t, x, eεu),

u(1) = f(t− ε, x),
u(2) = f(t, x− ε),
u(3) = f(te2ε, x)eε,

V
G1 : (t, x,u)→ (t+ ε, x,u),
G2 : (t, x,u)→ (t, x+ ε,u),
G3 : (t, x,u)→ (e−2εt, x, eεu),

u(1) = f(t− ε, x),
u(2) = f(t, x− ε),
u(3) = f(t, x)eε,

Table 3: Essential generators, similarity variable, similarity form, and reduced ODEs for different form of f(u).
Case Essential generators r(t, x) u(t, x) ODEs

f(u) = eu
V1 = ∂t
V2 = ∂x
V3 = 1

2t∂t + ∂u

x

t

x

h(r)
h(r)
h(r) + 2 ln(t)

h
′′
+ δ2

12h
(4) = 0

eh(h
′
)2 + ehh

′′
= 0

−2t−2Leh − h
′′
− δ2

12h
(4) = 0

f(u) = uk
V1 = ∂t
V2 = ∂x
V3 = 1

2kt∂t + ∂u

x

t

x

h(r)
h(r)

t
2
kh(r)

h
′′
+ δ2

12h
(4) = 0

hk−1k(h
′
)2 + hkh

′′
= 0

L2k2+4k
k2 hk+1 − h

′′
− δ2

12h
(4) = 0

f(u) = u−
4
3

V1 = ∂t
V2 = ∂x
V3 = −2

3t∂t + u∂u
V4 = t2∂t − 3ut∂u

x

t

x

x

h(r)
h(r)
t−3h(r)

t−
3
2h(r)

h
′′
+ δ2

12h
(4) = 0

−4
3h

− 7
3 (h

′
)2 + h−

4
3h
′′
= 0

h
′′
+ δ2

12h
(4) = 0

3
4Lh

− 1
3 − h

′′
− δ2

12h
(4) = 0

f(u) = u−4
V1 = ∂t
V2 = ∂x
V3 = −2t∂t + u∂u

x

t

x

h(r)
h(r)

t−
1
2h(r)

h
′′
+ δ2

12h
(4) = 0

4(h
′
)2 − hh

′′
= 0

−1
4Lh

−3 − h
′′
− δ2

12h
(4) = 0

f(u) = f0
V1 = ∂t
V2 = ∂x

x

t

h(r)
h(r)

h
′′
+ δ2

12h
(4) = 0

h
′′
= 0

5. Traveling wave solutions

In this section, we will focus on two cases: the first one when f(u) = f0, and the second one when
f(u) = f0(1 − bu).
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5.1. First case when f(u) = f0

In this first case, we use the capacitor’s voltage dependence using the following constant relationship
f(u) = f0, where f0 is an arbitrary constant. Equation (1.3) reduces to

Lf0utt − uxx −
δ2

12
uxxxx = 0. (5.1)

By using the following group invariant solution u(t, x) = U(X) and X = x − ct, the traveling wave
transformation of (5.1), reduces to the following ordinary differential equation:

(Lf0c
2 − 1)U

′′
−
δ2

12
U(4) = 0. (5.2)

By integrating (5.2) twice and taking integration constant zero, we obtain the following nonlinear ODE:

(Lf0c
2 − 1)U−

δ2

12
U
′′
= 0.

By solving the ODE, we obtain, the exact traveling wave solution:

u(t, x) = C1 sin

(
2
√
−3Lf0c2 + 3

δ
(x− ct)

)
+C2 cos

(
2
√

−3Lf0c2 + 3
δ

(x− ct)

)
,

where C1 and C2 are arbitrary constants.

5.2. Second case when f(u) = f0(1 − bu)

In this case, we apply tanh-function method when f(u) = f0(1 − bu). Herein, we give a brief de-
scription of this method. The tanh-method is first developed by Malfliet [12]. It is based on the funda-
mental concept that the traveling wave solution can be written in terms of tanh function. By using the
tanh-method one can find out exact traveling wave solutions or solitary solutions of nonlinear partial
differential equations by converting them into nonlinear ordinary differential equations taking traveling
wave transformation. The main steps of the tanh-method are as follows, for more details see [17–19].
Step 1. We consider the nonlinear evolutionary partial differential equation with two independent vari-
ables (t, x) for which we wish to find traveling wave solutions, given as

H(u,ut,ux,utt,uxx,utx, . . .) = 0, (5.3)

where u = u(t, x) is an unknown function, H is a polynomial in u and its derivatives.
Step 2. We use the traveling wave transformation u(t, x) = U(X), X = x− ct, where c represents wave
velocity. By making use of this transformation, the nonlinear partial differential equation (5.3) is trans-
formed to the following ordinary differential equation

H(U,U
′
,U

′′
,U(3), . . .) = 0. (5.4)

Step 3. We start by setting U = F(Y) and introduce the following sum

F(Y) =

M∑
i=0

aiY
i, (5.5)

where M is a positive integer, which is to be determined by balancing the highest order nonlinear term
with the highest order linear term in the resulting equation, and Y = tanh(X) is the new independent
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variable. We replace all the derivatives in the resulting Equation (5.4) with the following change of
derivatives:

d

dX
= (1 − Y2)

d

dY
,

d2

dX2 = −2Y(1 − Y2)
d

dY
+ (1 − Y2)2 d

2

dY2 ,

d3

dX3 = 2(1 − Y2(3Y2 − 1))
d

dY
− 6Y(1 − Y2)2 d

2

dY2 + (1 − Y2)3 d
3

dY3 ,

...

In order to find the value of the index M, we use the following scheme:

F→M,
Fn → nM,

F
′ →M+ 1,

F
′′ →M+ 2,

F(s) →M+ s.

Step 4. In this step, we substitute the value of U and all its derivatives into Equation (5.4), then we collect
the coefficients of Yi (i = 1, 2, 3, . . .) and equating them to zero, we obtained system of nonlinear algebraic
equations with unknown parameters ai, i = 1, 2, . . . ,M. This system of algebraic equations can be solved
either manually or by any symbolic program such as Maple. Thus, one can get the traveling wave solution
of (5.3) by putting the values of unknowns into (5.5).

In the following, we implement the tanh to our NLTL model. To this end, we use the capacitor’s
voltage dependence using the following first-order linear relationship f(u) = f0(1 − bu) where f0 and b
are arbitrary constants. In this case, equation (1.3) reduces to

Lf0(1 − bu)utt − Lf0bu
2
t − uxx −

δ2

12
uxxxx = 0. (5.6)

We obtained the following group invariant solution: u(t, x) = U(X) and X = x − ct. Now, by using
the traveling wave transformation, equation (5.6) reduces to the following nonlinear ordinary differential
equation:

Lf0c
2
(
(1 − bU)U

′′
− b(U

′
)2
)
−U

′′
−
δ2

12
U(4) = 0. (5.7)

Integrating (5.7) twice and taking integration constant zero, we obtain the following nonlinear ODE:

−12Lf0c
2U+ 6Lf0c

2bU2 + 12U+U
′′
= 0. (5.8)

Let us take the solution of equation (5.8) in the following form:

F(Y) =

M∑
i=0

aiY
i, (5.9)

where ai (i = 1, 2, · · · ,M) and M are the unknown parameters. Now, we determine the parameter M, by
balancing the linear term of highest-order with the highest order nonlinear terms. Therefore, we balance
F2 and FYY and get: 2M = M + 2 ⇒ M = 2. Therefore, the finite expression in (5.9) reduces to the
following expression:

F(Y) = a0 + a1Y + a2Y
2.
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After putting the values of F, F2, FY , and FYY in (5.8) and then equating the coefficients of Yi, i = 0, 1, 2, 3, 4,
we obtained the system of nonlinear algebraic equations as follows:

coefficients of Y0: 3Lf0c
2ba2

2 + 3δ2a2 = 0,
coefficients Y1: 6Lf0c

2ba1a2 + δ
2a1 = 0,

coefficients Y2: 6Lf0c
2ba0a1 − 6Lf0c

2a1 − δ
2a1 = 0,

coefficients Y3: −6Lf0c
2a0 + δ

2a2 + 3Lf0c
2ba2

0 + 6a0 = 0,
coefficients Y4: 6Lf0c

2ba0a2 + 6a2 − 4δ2a2 + 3Lf0c
2ba2

1 − 6Lf0c
2a2 = 0.

By solving above system of nonlinear algebraic equations, we obtain the following sets of unknown
parameters:

Set 1: c = c, a0 = a0, a1 = a1, a2 = a2.
Set 2: c = c, a0 = 0, a1 = 0, a2 = 0.
Set 3: c = c, a0 =

2(Lf0c
2−1)

Lf0c2b
, a1 = 0, a2 = 0.

Set 4: c =
√

3−δ2

3Lf0
, a0 = − δ2

(−3+δ2)b
, a1 = 0, a2 = 3δ2

(−3+δ2)b
.

Set 5: c = −
√

3−δ2

3Lf0
, a0 = − δ2

(−3+δ2)b
, a1 = 0, a2 = 3δ2

(−3+δ2)b
.

Set 6: c =
√

3+δ2

3Lf0
, a0 = 3δ2

(3+δ2)b
, a1 = 0, a2 = − 3δ2

(3+δ2)b
.

Set 7: c = −
√

3+δ2

3Lf0
, a0 = 3δ2

(3+δ2)b
, a1 = 0, a2 = − 3δ2

(3+δ2)b
.

Therefore, the traveling wave solutions of (5.6) are as follows:

Set 1: in this case, we found the constant solution u(t, x) = a0;
Set 2: in this case, we found the trivial solution u(t, x) = 0;
Set 3: in this case, we found the constant solution

u(t, x) =
2Lf0c

2 − 2
Lf0c2b

;

Set 4:

u(t, x) = −
δ2

(−3 + δ2)b
+

3δ2 tanh
(

3xLf0−i
√

3
√
−3+δ2

√
L
√
f0t

3Lf0

)2

(−3 + δ2)b
;

Set 5:

u(t, x) = −
δ2

(−3 + δ2)b
+

3δ2 tanh
(

3xLf0+i
√

3
√
−3+δ2

√
L
√
f0t

3Lf0

)2

(−3 + δ2)b
;

Set 6:

u(t, x) =
3δ2

(3 + δ2)b
−

3δ2 tanh
(

3xLf0−
√

3
√

3+δ2
√
L
√
f0t

3Lf0

)
(3 + δ2)b

;

Set 7:

u(t, x) =
3δ2

(3 + δ2)b
−

3δ2 tanh
(

3xLf0+
√

3
√

3+δ2
√
L
√
f0t

3Lf0

)
(3 + δ2)b

.

6. Conclusion

In this paper, the Lie group method is used to perform group classification of the partial differential
equation that governs the nonlinear transmission line model. The algebraic properties of this model are
given and in each case of the arbitrary function, we have reduced the initial partial differential equation to
an ordinary differential equation. Finally, a wide variety of exact traveling wave solutions are obtained via
the tanh-method. We see that this approach is effective for studying and analyzing nonlinear problems
from engineering sciences and for determining the forms of the arbitrary function.
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