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Abstract
We introduce and study deferred Nörlund statistical convergence in probability, mean of order r, distribution and study

the interrelation among them. Based upon the proposed method to illustrate the findings, we present new Korovkin-type
theorems for the sequence of random variables via deferred Nörlund statistically convergence and present compelling examples
to demonstrate the effectiveness of the results. ©2017 All rights reserved.
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1. Introduction and Preliminaries

Fast [6] and also Schoenberg [22] studied the concept of statistical convergence and continued by Rath–
Tripathy [21] and Gadjiev–Orhan [8].

Suppose that (xm) and (ym) are the sequences of non-negative integers fulfilling

xm < ym, ∀ m ∈N and lim
x→∞ym =∞. (1.1)

Further, let (em) and (gm) be two sequences of non-negative real numbers such that

Em =

ym∑
n=xm+1

en and Fm =

ym∑
n=xm+1

gn. (1.2)

The convolution of (1.2) is defined as

Rm =

ym∑
v=xm+1

evgym−v.

As introduced by Srivastava et al. in [23], the deferred Nörlund (DN) mean is defined as

tm =
1

Rm

ym∑
n=xm+1

eym−ngnyn.
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Suppose that (xm) and (ym) are the sequences fulfilling conditions (1.1) and (em), (gm) are sequences
satisfying (1.2). A sequence (Ym) is called as deferred Nörlund statistically convergent to Y if ∀ ε > 0, the
set

{n : n 6 Rm, and eym−ngn|Ym − Y| > ε}

has zero deferred Nörlund density, i.e. if

lim
m→∞ 1

Rm

∣∣∣{n : n 6 Rm and eym−ngn|Ym − Y| > ε
}∣∣∣ = 0.

We write it as
StDN lim Ym = Y.

Suppose that (xm) and (ym) are the sequences fulfilling conditions (1.1) and (em), (gm) are sequences
satisfying (1.2). A sequence (Ym) is called as deferred Nörlund statistically probability (or StDNP−)
convergent to a random variable Y, if ∀ ε > 0 and δ > 0, the set

{n : n 6 Rm and eym−ngnP(|Ym − Y| > ε) > δ}

has DN−density zero, i.e.,

lim
m→∞ 1

Rm

∣∣∣{n : n 6 Rm and eym−ngnP(|Ym − Y| > ε) > δ
}∣∣∣ = 0

or

lim
m→∞ 1

Rm

∣∣∣{n : n 6 Rm and 1 − eym−ngnP(|Ym − Y| 6 ε) > δ
}∣∣∣ = 0,

and it is denoted as

StDNP lim
m→∞ eym−ngnP(|Ym − Y| > ε) = 0

or

StDNP lim
m→∞ eym−ngnP(|Ym − Y| 6 ε) = 1.

2. Deferred Nörlund statistically probability convergence

In this section, we study deferred Nörlund statistically probability convergence, for a historical review
and basic concept we refer [3, 4, 11, 15, 20, 12, 18, 9, 5, 13, 26].

Theorem 2.1. Suppose that (Ym) and (Zm) are sequences of random variables and consider two random variables
Y and Z. Then the following assertions are satisfied

1. StDNPYm → Y and StDNPYm → Z⇒ P(Y = Z) = 1,

2. StDNPYm → y⇒ StDNPY
2
m = y2,

3. StDNPYm → y and StDNPZm → z⇒ StDNPYmZm → yz,

4. StDNPYm → y and StDNPZm → z⇒ StDNP
Ym
Zm
→ y

z , z 6= 0,
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5. StDNPYm → Y and StDNPZm → Z⇒ StDNPYmZm → YZ,

6. if StDNPYm → Y ∀ ε, δ > 0, then ∃ a ∈N s.t.

d({n : n 6 Rm and eym−ngnP(|Ym − Ya| > ε) > δ}) = 0.

Proof. Let ε and δ be positively small real numbers. Also consider (xm) and (ym) are the sequences
fulfilling conditions (1.1) and (em), (gm) are sequences satisfying (1.2).

1. Suppose that
a ∈
{
n : n 6 Rm and eym−ngnP

(
|Ym − Y| > ε

2

)
< δ

2

}
∩
{
n : n 6 Rm and eym−ngnP

(
|Ym −Z| >

ε
2

)
< δ

2

}
(as the limit density of both the sets is 1). Then,

eym−ngnP
(
|Y −Z| > ε

)
6 eym−ngnP

(
|Ya − Y| > ε

2

)
+ eym−ngnP

(
|Ya −Z| > ε

2

)
< δ.

It means P{Y = Z} = 1.
2. If StDNPYm → 0, then StDNPY2

m → 0. Here, we see that a ∈ {n : n 6 Rm and eym−ngnP(|Ym−0| >
ε) > δ} = a ∈ {n : n 6 Rm and eym−ngnP(|Y

2
m − 0| > ε > δ}. Now, take Y2

m = (Ym − y)2 + 2y(Ym −
y) + y2. Thus, StDNPY2

m → y2.

3. Suppose that StDNPYm → y and StDNPZm → z. As StDNPYmZm = StDNP
1
4 {(Ym + Zm)2 − (Ym −

Zm)2} = 1
4 {(ym + zm)2 − (ym − zm)2} = yz.

4. Suppose that R and S be two events correspond |Zm − z| < |z| and
∣∣∣ 1
Zm

− 1
z

∣∣∣ > ε. We have∣∣∣ 1
Zm

−
1
z

∣∣∣ = |Zm − z|

|zZm|
=

|Zm − z|

|z| · |z+ (Zm − z)|
6

|Zm − z|

|z| · |(|z|− |Zm − z|)|
.

If the events R and S occurs at same time, then

|Zm − z| >
ε|z2|

1 + ε|z|
.

Further, let ε0 = ε|z|2/(1 + ε|z|) and A be the event such that |Zm − z| > ε0. Thus,

RS ⊆ A⇒ P(S) 6 P(A) + P(Rc).

Thus,{
n : n 6 Rm and eym−ngnP

(
| 1
Zm

− 1
z | > ε

)
> δ
}
⊆
{
n : n 6 Rm and

eym−ngnP
(
|Zm − z| > ε0

)
>
δ

2

}
∪
{
n : n 6 Rm and eym−ngn

P
(
|Zm − z| > |z|

)
>
δ

2

}
.

Therefore, StDNP 1
Zm
→ 1

z . Hence, we write StDNP YmZm →
y
z , z 6= 0.

5. Suppose that StDNPYm → Y and X be a random variable such that YmX→ YX. Since X is a random
variable such that ∀ε > 0, ∃ δ > 0 and eym−ngnP(|X| > δ) 6 ε

2 . Next, ∀ ε ′ > 0,

eym−ngnP
(
|YmX− YX| > ε ′) = eym−ngnP

(
|Ym − Y||X| > ε ′, |Z| > δ

)
+eym−ngnP

(
|Ym − Y||X| > ε ′, |Z| 6 δ

)
6
ε

2

+eym−ngnP
(
|Ym − Y| >

ε ′

δ

)
.
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Which implies,
{
n : n6Rm and eym−ngnP

(
|YmX− YX|>ε ′

)}
⊆
{
n : n6Rm and eym−ngnP

(
|Ym −

y| > ε ′

δ

)
> ε

2

}
. Therefore,

StDNP(Ym − Y)(Zm −Z)→ 0.

Thus,
StDNPYmZm → YZ.

6. Suppose that (xm) and (ym) be two non-negative sequences such that

eym−ngnP
(
|Ym − Y| >

ε

2

)
<
δ

2
and {

n : n 6 Rm and eym−ngnP
(
|Ym − Y| >

ε

2

)
<
δ

2

}
= 1.

Now,{
n : n 6 Rm and eym−ngnP

(
|Ym − Y| > ε

)
> δ
}
⊆
{
n : n 6 Rm and eym−ngnP

(
|Ym − Y| > ε

2

)
<

δ
2

}
= 1. Which implies that

d({n : n 6 Rm and eym−ngnP(|Ym − Y| > ε) > δ}) = 0.

Theorem 2.2. Suppose that f : R → R is uniform continuous on R and StDNPYm → Y. Then StDNPf(Ym) →
f(Y).

Proof. Let us consider a random variable Y such that for each δ > 0, ∃ β ∈ R such that P(Y > β) 6 δ/2.
Since, f is uniformly continuous on [β,β] ∀ε > 0, ∃δ0 such that

|f(ym) − f(y)| < ε whenever |ym − y| < δ0.

Thus,

P(|f(Ym) − f(Y)| > ε) 6 P(|Ym − Y| > δ0) + P(|Y > β|)

6 P(|Ym − Y| > δ0) + δ/2.

However, from the definition of StDNP−convergence, we have{
n : n 6 Rm and eym−ngnP

(
|f(Ym) − f(Y)| > ε

)
> δ
}

⊆
{
n : n 6 Rm and eym−ngnP

(
|Ym − Y| > δ0

)
<
δ

2

}
.

3. Deferred Nörlund statistical mean convergence

Definition 3.1. Suppose that r > 1 be a fixed number. A sequence (Ym) is rth mean convergent to Y, if

lim
m→∞E(|Ym − Y|r) = 0.

Definition 3.2. A sequence (Ym) is statistically rth mean convergent (MC) to a random variable Y, where
Y : S→ R if,

lim
m→∞ 1

m

∣∣∣n : n 6 m and E(|Ym − Y|r > ε)
∣∣∣ = 0

for any ε > 0. We write it as
StMC lim

m→∞E(|Ym − Y|r) = 0.
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Definition 3.3. Suppose that (xm) and (ym) are the sequences fulfilling conditions (1.1) and (em), (gm)
are sequences satisfying (1.2). A sequence (Ym) is said to be deferred Nörlund statistically rth (r > 1)
mean convergent to Y (Y : S→ R), if for ε > 0,

lim
m→∞ 1

Rm

∣∣∣{n : n 6 Rm and eym−ngnE
(
|Ym − Y|r > ε

)}∣∣∣ = 0.

It is denoted as
StDNM lim

m→∞E(|Ym − Y|r) = 0.

Theorem 3.4. Let StDNM limm→∞ E(|Ym − Y|r) = 0 for r > 1, then StDNM limm→∞ P(|Ym − Y| > ε) = 0.

Proof. For every ε > 0, we have from Markov’s inequality

StDNM lim
m→∞P(|Ym − Y| > ε) = StDNM lim

m→∞P(|Ym − Y|r > εr) (r > 1)

6 StDNM lim
m→∞ E(|Ym − Y|r)

εr
= 0.

From definition of statistically deferred Nörlund mean convergence

StDNM lim
m→∞E(|Ym − Y|r) = 0,

it implies that
StDNP lim

m→∞P(|Ym − Y| > ε) = 0.

We now present an example to show that a sequence of random variables is statistically probability con-
vergent but not statistically rth−mean convergent.

Example 1: Suppose that xm = 2m − 1,ym = 4m − 1. Also, suppose that eym−m = 2m and gm = 1.
Further, consider a sequence (zm) of random variables such that

Ym =


m, with probability 1√

m

0, with probability 1 − 1√
m

.

Then the statistically deferred Nörlund convergence of Ym is given as

lim
m→∞ 1

2m

∣∣∣{n : n 6 Rm and 2mP(|Ym − 0| > ε)
}∣∣∣ = lim

m→∞P(Ym = m)

= lim
m→∞ 1√

m

= 0.

However, statistically deferred Nörlund mean convergence, for r > 1, is

lim
m→∞ 1

2m

∣∣∣{n : n 6 Rm and 2mE(|Ym − 0|r)
}∣∣∣ = lim

m→∞
(
mr

( 1√
m

)
+ 0

(
1 −

1√
m

))
= lim

m→∞mr−1/2

= ∞.

This implies that the sequence (Ym) is StDNP−convergent but not StDNM−convergent.
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4. Statistical distribution convergence via Deferred Nörlund

Definition 4.1. The sequence of random variables (Ym) is said to be distribution convergent (or convergent
in distribution) to Y, if

lim
m→∞ FYm(y) = FY(y)

for all y ∈ R at which FY(y) is continuous.

Thorughout the paper (FYm(y)) is the sequence of distribution functions of (Ym) and FY(y) is the distri-
bution function of Y.

Definition 4.2. The sequence (FYm(y)) is called as statistically distribution convergent (or StDC), if there
exists FY(y) of random variable Y such that for each ε > 0,

lim
m→∞ 1

m

∣∣∣{n : n 6 m and |FYm(y) − FY(y)| > ε
}∣∣∣ = 0.

We may write this as
StDC lim

m→∞ FYm(y) = FY(y).
Definition 4.3. The sequence (FYm(y)) of distribution functions is called as deferred Nörlund statistically
distribution convergent (or StDNDC), if there exists FY(y) of Y such that for each ε > 0,

lim
m→∞ 1

Rm

∣∣∣{n : n 6 Rm and eym−ngn|FYm(y) − FY(y)| > ε
}∣∣∣ = 0.

In this case, we say

StDNDC lim
m→∞ FYm(y) = FY(y).

Theorem 4.4. Suppose that StDNP limm→∞ P(|Ym − Y| > ε) = 0, then

StDNDC lim
m→∞ FYm(y) = FY(y).

Proof. Suppose that (FYm(y)) is distribution functions of (Ym), and FY(y) be the distribution function of
Y. For i, j ∈ R such that i < j, we have

(Y 6 i) = (Ym 6 j, Y 6 i) + (Ym > j, Y 6 i).

Further,
(Ym 6 j, Y 6 i) ⊆ (Ym 6 j),

which implies that
(Y 6 i) ⊆ (Ym 6 j) + (Ym > j, Y 6 i). (4.1)

Let us take the probability to left hand side and right hand side of equation (4.1)

P(Y 6 i) 6 P{(Ym 6 j) + (Ym > j, Y 6 i)}

6 P(Ym 6 j) + P(Ym > j, Y 6 i).

It means that
FYm(j) > FY(i) − P(Ym > j, Y 6 i). (4.2)

If Ym > j, Y 6 i, then Ym > j,−Y > −i, so that Ym − Y > j− i, that is,

(Ym > j, Y 6 i) ⊆ (Ym − Y > j− i) ⊆ (|Ym − Y| > j− i).

This means
P(Ym > j, Y 6 i) 6 P(|Ym − Y| > j− i).
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As we know that i < j and StDNPYm → Y, we obtain

StDNP lim
m→∞P(Ym > j, Y 6 i) = 0.

From (4.2) we get
StDNDC lim

m→∞ FYm(j) > FY(i).
Similarly, if j < a for any real constant a, then

(Y 6 j) = (Y 6 a, Ym 6 j) + (Y > a, Ym 6 j).

Consequently,
FYm(j) 6 FY(a) + P(Y > a, Ym 6 j)

and
StDNDC lim

m→∞P(Y > a, Ym 6 j) = 0.

Therefore, we get
StDNDC lim

m→∞ FYm(j) 6 FY(a).
Thus, with i < j < a, we have

StDNDC lim
m→∞ FYm(j) = FY(i).

Example 2: Consider the random variables ((Ym), Y) of two dimensions as {(0, 0), (0, 1),
(1, 0), (1, 1)} such that

(Ym, Y) =


0, [P(Ym = 0, Y = 0) = 0 = P(Ym = 1, Y = 1)]

1
2 , [P(Ym = 1, Y = 0) = 0 = P(Ym = 0, Y = 1)].

The distribution function of Ym is given by Ym = (λ1 = 0, 1), with probability mass function

(pym,λ1) = P(Ym = λ1), where pym,0 =
1
2
= pym,1

and for Y = λ2(λ2 = 0, 1), with probability mass function

(pym,λ2) = P(Ym = λ2), where py,0 =
1
2
= py,1.

If (FYm(y)) is distribution functions of (Ym) and FY(y) is the distribution function of Y, then

FY(y) = lim
m→∞ FYm(y) =


0, (y < 0)

1
2 , (0 6 y < 1).

1, (z > 1).

Thus, we get

StDNDC lim
m→∞ FYm(y) = FY(y), where xm = 2m− 1,ym = 4m− 1, eym−m = 2m and gm = 1.

But, it is not StPC for the sequence of random variables, i.e.

StDNPC lim
m→∞P(|Ym − Y| > ε) 6= 0, where xm = 2m− 1,ym = 4m− 1, eym−m = 2m and gm = 1.
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5. Applications

The hypothesis of the Korovkin-type theorems have been studied by several researchers in various field in
different ways such as in, summability theory, functional analysis and probability theory. Korovkin-type
approximation theorems have been investigated by many mathematicians under various background, in-
volving function spaces, Banach spaces, and so on. Recently, Mohiuddine and Alamri studied Korovkin
and Voronovskaya type approximation theorems in [14]. Further, Hazarika et al. [10] studied Korovkin
approximation theorem for Bernstein operator of rough statistical convergence of triple sequences. For
detailed study on Korovkin approximation theorem one may refer [2], [16], [17], [19], [27].
By C(Y), we denote the space of all continuous probability functions defined on a compact subset Z ⊂ R.
The space C(Y) is a Banach space with respect to the norm

||f||∞ = sup
z∈Y

{|f(z)|}, f ∈ C(Y).

We say that Y is a positive linear operator of sequence of random variables if

Y(f, z) > 0 whenever f > 0.

Throughout, Yn : C(Y)→ C(Y) be a sequence of random variables of positive linear operators.

Theorem 5.1 ([25]). Let Yn : C(Y)→ C(Y). Then for all f ∈ C(Y), we have

StDNP lim
n→∞ ||Yn(f, z) − f(z)||∞ = 0

iff
StDNP lim

n→∞ ||Yn(1, z) − 1||∞ = 0, (5.1)

StDNP lim
n→∞ ||Yn(z, z) − z||∞ = 0, (5.2)

StDNP lim
n→∞ ||Yn(z

2, z) − z2||∞ = 0. (5.3)

Theorem 5.2. Let Yn : C(Y)→ C(Y). Then for all f ∈ C(Y), we have

StDNM lim
n→∞ ||Yn(f, z) − f(z)||∞ = 0

iff
StDNM lim

n→∞ ||Yn(1, z) − 1||∞ = 0,

StDNM lim
n→∞ ||Yn(z, z) − z||∞ = 0,

StDNM lim
n→∞ ||Yn(z

2, z) − z2||∞ = 0.

Theorem 5.3. Let Yn : C(Y)→ C(Y). Then for all f ∈ C(Y), we have

StDNDC lim
n→∞ ||Yn(f, z) − f(z)||∞ = 0

iff
StDNDC lim

n→∞ ||Yn(1, z) − 1||∞ = 0,

StDNDC lim
n→∞ ||Yn(z, z) − z||∞ = 0,

StDNDC lim
n→∞ ||Yn(z

2, z) − z2||∞ = 0.
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Example 3: Let Mm(f,y) be a Meyer-König and Zeller operators on C[0, 1] and Z = [0, 1] as defined in [1] as

Mm(f,y) = (1 − y)m+1
∞∑
t=0

f
( t

t+m+ 1

)(m+ t

t

)
yt.

Further, let us consider a sequence of operators Yn : C[0, 1] → C[0, 1] and (Yn) as defined in example 2.4
such that

Yn(f,y) = [1 + FYm(y)]Mn(f), (f ∈ C[0, 1]), (5.4)

where (FYm(y)) is defined in Example 2. Now we observe that

Yn(1,y) = [1 + FYm(y)] · 1 = [1 + FYm(y)],

Yn(u, z) = [1 + FYm(y)] · y = [1 + FYm(y)] · y

and

Yn(u
2, z) = [1 + FYm(y)] ·

{
y2

(m+ 2
m+ 1

)
+

y

m+ 1

}
.

Therefore, we have

StDNDC lim
n→∞ ||Yn(1,y) − 1||∞ = 0,

StDNDC lim
n→∞ ||Yn(y,y) − y||∞ = 0,

StDNDC lim
n→∞ ||Yn(y

2,y) − y2||∞ = 0.

Hence, Yn(f,y) fulfills (5.1), (5.2) and (5.3). Thus, from Theorem 5.3

StDNDC lim
n→∞ ||Yn(f,y) − f||∞ = 0.

Hence, it is (DNDC)−convergent. However, (Ym) is neither (DN)−statistical convergent nor (DN)− con-
vergent. Thus, we can exhibit that the work in [23] does not hold for our operators described in (5.4).
Hence, our Theorem 5.3 is stronger than the theorem proved in [23].

6. Conclusion

Upon prior analysis, our interest is to modify the studies of Srivastava et al. [24] and introduce various
aspects of statistical convergence for the sequences of random variables and sequences of real numbers via
deferred Norlund summability mean. We first study various results presenting the connection by using
fundamental limit concepts of sequences of random variables. As an applications of our findings, we
present new Krorvkin-type approximation results and also demonstrated the effectiveness of the findings.
As a future work one can obtain the corresponding results of the present paper using deferred Euler
summability mean.
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[25] H. M. Srivastava, B. B. Jena, S. K. Paikray, Deferred Cesàro statistical probability convergence and its applications to
approximation theorems, J. Nonlinear Convex Anal., 20 (2019), 1777–1792. 5.1

[26] H. M. Srivastava, B. B. Jena and S. K. Paikray, A certain class of statistical probability convergence and its applications
to approximation theorems, Appl. Anal. Discrete Math., 14(3) (2020), 579-598. 2

[27] B.C. Tripathy, A. Esi and T. Balakrushna, On a new type of generalized difference Cesàro sequence spaces, Soochow J.
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