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Abstract
In this paper, the stability and boundedness analysis of a certain system of two nonlinear delay differential equations with

variable delay ρ(t) is carried out. By using the Lyapunov’s second method and Lyapunov-Krasovskii’s functional derived from
the differential equations describing the system which yielded a better stability and boundedness estimate to establish sufficient
conditions for the uniform asymptotic stability of the trivial solution and uniform ultimate boundedness of solution. These new
results improve and generalize some results that can be found in the literature.
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1. Introduction

The system of nonlinear delay differential equation to be considered is given by

x ′ = ay+ q1(x(t− ρ(t)), y ′ = by+ q2(x(t− ρ(t)) + p(t, x,y), (1.1)

where the constants a,b > 0 and functions q1,q2,p are continuous in their respective arguments. Also,
0 6 ρ(t) 6 η, ρ ′(t) 6 ε, 0 6 ε 6 1, and η, ε > 0 are some constants, η will be determined later. The
functions q1,q2 also satisfy a Lipschitz condition in x.

Many authors have investigated the qualitative properties of solutions of various and more general
form of scalar delay differential equations of second and higher orders. For instance, see [1, 2, 12–
14, 16, 26]. In particular, some authors have contributed to the study of qualitative properties of solutions
of system of differential equations of second order without delay or delay being zero, for example, [8, 9,
22, 23], where they obtained results for stability, boundedness or both for the system considered while
few others for instance, [24, 25] obtained results for the nonlinear terms depending on either constant,
variable or multiple delay for stability and boundedness of solutions of system of differential equations
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which are quite different from the system (1.1). However, in the relevant literature, there is no work on
the qualitative properties of solutions of system of two nonlinear delay differential equations of the form
(1.1). So, it is worthwhile to investigate the stability and boundedness of solutions of (1.1). Special cases
of (1.1) (where the variable delay is absent) and p = 0 arising from the so-called Aizermann problem have
been investigated by [6, 10, 11] who extended the result of the former to a more general form to obtain the
stability of the zero solution. In almost all the papers mentioned, Lyapunov’s second method has been
used with the aid of suitable continuously differentiable scalar functions to establish their results. For
a more satisfactory result, one needs to construct a suitable complete Lyapunov-Krasovskii’s functional.
Unfortunately, the construction of this function remains a hard task (see [4]). Stability and boundedness of
solutions perform significant roles in defining the behaviour of solutions of fairly complicated nonlinear
physical systems arising from applied sciences such as after effect, equation with variable delay, time-
delay system and nonlinear oscillations, see [5, 19, 20]. More importantly, the study of nonlinear delay
system (1.1) will present some new beneficence to the qualitative theory of delay differential equations
and also some recent areas of mathematical ecology. See [3, 7, 15, 18].

The motivation for this work comes from the paper of [10]. The aim is to improve the result proved
in [10] for the uniform asymptotic stability of the trivial solution (when p = 0) and uniform ultimate
boundedness (when p 6= 0) of solutions of system (1.1) using a suitable Lyapunov-Krasovskii’s functional
derived from the differential equations describing the system. Results obtained are not only new but will
improve and generalize the results of [6, 10, 11]. An example is given to illustrate the effectiveness and
significance of the results obtained as well as provide geometric arguments to support our findings on
the behaviour of solutions of the system.

Now, we write the equation (1.1) as the following equivalent system:

x ′ = ay+ q1(x) +

∫t
t−ρ(t)

q ′1(x(s))y(s)ds, y ′ = by+ q2(x) +

∫t
t−ρ(t)

q ′2(x(s))y(s)ds+ p(t, x,y), (1.2)

where q ′1 and q ′2 are continuous for all x with q1(0) = q2(0) = 0 .

2. Statement of result

The following is the theorem on uniform asymptotic stability of solutions of (1.1) when p = 0.

Theorem 2.1. Apart from the earlier declaration of q1 and q2, we also assume that there are constants δ,ν,L,M > 0
and aν− bδ > 0 such that the following conditions hold:

(a1) q1(x)
x > δ, q2(x)

x > ν, x 6= 0;
(a2) |q ′1(x)|6 L, |q ′2(x)|6M, for every x ∈ R;

provided

η < min
{

2(b+ δ)(aν− bδ)
k1

;
2ab(1 − ε)(b+ δ)(aν− bδ)

δν(k2 + k3 + k4)

}
with

k1 = [b(b+ δ) + a(bν2 − ν)]L+ ab(1 + δν)M > 0,

k2 = a(1 − ε)

{ [
(a+ bδ2) + b(aν− bδ)

]
M+ b(1 + δν)L

}
> 0,

k3 = 2[(b+ δ) + a(bν2 − ν) + ab(1 − ε)(1 + δν)]L > 0,

k4 = 2a[(a+ bδ2) + b(aν− bδ) + b(1 − ε)(1 + δν)]M > 0.

Then, the trivial solution of (1.1) is uniformly asymptotically stable.
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2.1. Preliminary result

The tool in proving the result is the scalar functional V(t) = V(xt,yt) defined by

2V(t) =
1
ab

[ ∫x
0
(aq2(σ) − bq1(σ))dσ+ b

2x2 − 2abxy+ a2y2
]

+
1
δν

[
q2

2(x) − 2δyq2(x) + δ
2y2 + (aν− bδ)y2

]
+ 2n1

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds+ 2n2

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds,

(2.1)

where n1,n2 > 0 are constants that will be determined later.
The proof of Theorem 2.1 depends on the following lemma.

Lemma 2.2. Assume that the hypotheses (a1)-(a2) of Theorem 2.1 hold, then there exists the constants D1,D2 > 0
such that

D1(x
2 + y2) 6 2V(t) 6 D2(x

2 + y2). (2.2)

Proof. Clearly, (2.1) vanishes for x = y = 0 and can be re-arranged as follows

2V(t) =
1
ab

[ ∫x
0
(aν−

bq1(σ)

σ
)σdσ+

∫x
0
(
aq2(σ)

σ
− aν)σdσ+ (bx− ay)2

]
+

1
δν

[
(q2(x) − δy)

2 + (aν− bδ)y2
]
+ 2n1

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds+ 2n2

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds.

By the hypotheses (a1)-(a2) of Theorem 2.1, we have that the terms∫x
0
(aν−

bq1(σ)

σ
)σdσ > (aν− bδ)x2 and

∫x
0
(
aq2(σ)

σ
− aν)σdσ > 0.

It follows that

2V(t) >
1
ab

[
(aν− bδ)x2 + (bx− ay)2

]
+

1
δν

[
(q2(x) − δy)

2 + (aν− bδ)y2
]

+ 2n1

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds+ 2n2

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds.

Since by Theorem 2.1, aν − bδ > 0 and the integrals 2n1
∫0
−ρ(t)

∫t
t+s y

2(σ)dσds and

2n2
∫0
−ρ(t)

∫t
t+s y

2(σ)dσds being non-negative, thus, it is evident from the terms contained in the above
inequality that there exists a constant D1 > 0 small enough such that

2V(t) > D1(x
2 + y2).

In order to prove the right side of inequality (2.2), we consider the hypotheses (a1)-(a2) of Theorem 2.1
and the fact that 2|x||y|6 x2 + y2, yields for V(t) in (2.1) term by term,

2ab|x||y| 6 ab(x2 + y2), 2δ|y||q2(x)| 6 δν(x
2 + y2),

|q2
2(x)| 6 ν

2x2,
∫x

0
(aq2(σ) − bq1(σ))σdσ 6 (aν− bδ)x2,

2n1

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds 6 n1ρ
2(t)sy2, 2n2

∫ 0

−ρ(t)

∫t
t+s

y2(σ)dσds 6 n2ρ
2(t)sy2.
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Thus,

2V(t) 6
(
a2 − bδ− 2ab

ab
+ ν(

1
δ
+

1
b
)

)
x2 +

(
− 1 + a

(b+ δ)

bδ
+
δ− b

ν
+
ν

δ
+ ρ2(t)s(n1 +n2)

)
y2

6 D∗2(x
2 + y2),

where D∗2 = max
{
a2−bδ−2ab

ab + ν( 1
δ +

1
b);−1 + a

(b+δ)
bδ + δ−b

ν + ν
δ + ρ2(t)s(n1 + n2)

}
. We choose a con-

stant D2 > 0, so that
2V(t) 6 D2(x

2 + y2).

Thus, (2.2) of Lemma 2.2 is established, where D1,D2 are finite constants. Next, we present the Proof
of Theorem 2.1.

Proof. Now, differentiating (2.1) with respect to t along the system (1.2) and after simplification we get

dV(t)

dt
=−

1
ab

[
a
q1(x)

x

q2(x)

x
x2 + ab

q2(x)

x
x2 − b

q2
1
x2 x

2 − b2q1(x)

x
x2
]

−
1
δν

[
aδq ′2(x)y

2 + abνy2 − bδ2y2 − b2δy2
]

+

[
δ

a
|x|+

b

a
|x|+ (ν2 −

ν

b
)|x|+ (1 + δν)|y|

]
n1

∫t
t−ρ(t)

q ′1(x(s))y(s)ds

+

[
a

b
|y|+ δ2|y|+ (aν− bδ)|y|+ (1 + δν)|x|

]
n2

∫t
t−ρ(t)

q ′2(x(s))y(s)ds

+ (n1 +n2)ρ(t)y
2 + (n1 +n2)(1 − ρ ′(t))

∫t
t−ρ(t)

y2(s)ds.

By the hypotheses (a1)-(a2) of Theorem 2.1, we have

dV(t)

dt
6−

1
ab

[
(b+ δ)(aν− bδ)

]
x2 −

1
δν

[
(b+ δ)(aν− bδ)

]
y2

+

[
δ

a
|x|+

b

a
|x|+ (ν2 −

ν

b
)|x|+ (1 + δν)|y|

]
×
∫t
t−ρ(t)

q ′1(x(s))y(s)ds

+

[
a

b
|y|+ δ2|y|+ (aν− bδ)|y|+ (1 + δν)|x|

]
×
∫t
t−ρ(t)

q ′2(x(s))y(s)ds

+ (n1 +n2)ρ(t)y
2 + (n1 +n2)(1 − ρ ′(t))

∫t
t−ρ(t)

y2(s)ds.

(2.3)

Using the hypothesis (a2) of Theorem 2.1 and the fact that 2uv 6 u2 + v2, the term in (2.3) yields[
δ

a
|x|+

b

a
|x|+ (ν2 −

ν

b
)|x|− (1 + δν)|y|

]
×
∫t
t−ρ(t)

q ′1(x(s))y(s)ds

6

[
(
b+ δ

a
+
bν2 − ν

b
)ρ(t)

L

2
x2 + (

b+ δ

a
+
bν2 − ν

b
)
L

2

∫t
t−ρ(t)

y(s)ds

+ (1 + δν)ρ(t)
L

2
y2 + (1 + δν)ρ(t)

L

2

∫t
t−ρ(t)

y(s)ds
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and [
a

b
|y|+ δ2|y|+ (aν− bδ)|y|− (1 + δν)|x|

]
×
∫t
t−ρ(t)

q ′2(x(s))y(s)ds

6

[
(
a+ bδ2

b
+ (aν− bδ))ρ(t)

M

2
y2 + (

a+ bδ2

b
+ (aν− bδ))

M

2

∫t
t−ρ(t)

y(s)ds

+ (1 + δν)ρ(t)
M

2
x2 + (1 + δν)ρ(t)

M

2

∫t
t−ρ(t)

y(s)ds,

and (2.3) becomes

dV(t)

dt
6 −

1
ab

[
(b+ δ)(aν− bδ)

]
x2 −

1
δν

[
(b+ δ)(aν− bδ)

]
y2

+
1
2

[
(
b+ δ

a
+
bν2 − ν

b
)L+ (1 + δν)M

]
ρ(t)x2

+
1
2

[
(
a

b
+
δ2

b
+ (aν− bδ))M+ (1 + δν)L+ 2n1 + 2n2

]
ρ(t)y2

+
1
2

[
(
b+ δ

a
+
bν2 − ν

b
)L+ (1 + δν)L− 2n1(1 − ρ ′(t))

] ∫t
t−ρ(t)

y2(s)ds

+
1
2

[
(
a+ bδ2

b
+ (aν− bδ))M+ (1 + δν)M− 2n2(1 − ρ ′(t))

] ∫t
t−ρ(t)

y2(s)ds.

By the assumption on ρ(t), ρ ′(t), and choosing

n1 =
[b(b+ δ) + a(bν2 − ν) + ab(1 − ε)(1 + δν)]L

2ab(1 − ε)
> 0

and

n2 =
[(a+ bδ2 + b(aν− bδ)) + b(1 − ε)(1 + δν)]M

2b(1 − ε)
> 0,

thus,

dV(t)

dt
6−

1
2ab

{
2(b+ δ)(aν− bδ) −

[
(b(b+ δ) + a(bν2 − ν))L+ ab(1 + δν)]M

]
η

}
x2

−
1

2δν

{
2(b+ δ)(aν− bδ) − δν

[
[a+ bδ2 + b(aν− bδ)]M+ b(1 + δν)L

b

+ 2
[b(b+ δ) + a(bν2 − ν) + ab(1 − ε)(1 + δν)]L

ab(1 − ε)

+ 2
[(a+ bδ2 + b(aν− bδ)) + b(1 − ε)(1 + δν)]M

b(1 − ε)

]
η

}
y2.

Choosing

η < min
{

2(b+ δ)(aν− bδ)
k1

;
2ab(1 − ε)(b+ δ)(aν− bδ)

δν(k2 + k3 + k4)

}
,

where

k1 = [b(b+ δ) + a(bν2 − ν)]L+ ab(1 + δν)M > 0,

k2 = a(1 − ε)

{
[(a+ bδ2) + b(aν− bδ)]M+ b(1 + δν)L

}
> 0,
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k3 = 2[(b+ δ) + a(bν2 − ν) + ab(1 − ε)(1 + δν)]L > 0,

k4 = 2a[(a+ bδ2) + b(aν− bδ) + b(1 − ε)(1 + δν)]M > 0,

we get
dV(t)

dt
6 −D3(x

2 + y2), (2.4)

for some D3 > 0.

The conclusion of this proof follows by the same reasoning in [2, 21] using (2.2) and (2.4). This shows
that the trivial solution of (1.1) is asymptotically stable. Hence, the proof of Theorem 2.1 is complete.

3. Statement of result

The following is the theorem on uniform ultimate boundedness of solutions of (1.1), when p 6= 0.

Theorem 3.1. Assume that all the hypotheses of Theorem 2.1 hold and there exists a constant ∆0 > 0 such that

|p(t, x,y)| 6 ∆0, (3.1)

then the solution of (1.1) is uniformly ultimately bounded.

Proof. In view of V ′(1.2), when p = 0 in (2.4), we have for p 6= 0 in (1.1), along any solution (xt,yt) of (1.2)
to get for

dV(t)

dt
6 −D3(x

2 + y2) + [(1 + δν)|x|+ (
a

b
+ δ2 + (aν− bδ))|y|]|p(t, x,y)|.

By (3.1) of Theorem 3.1, we have

dV(t)

dt
6 −D3(x

2 + y2) +D4(|x|+|y|)∆0(x
2 + y2),

where D4 = max{(1 + δν), ab + δ2 + (aν− bδ)},

dV(t)

dt
6 −D3(x

2 + y2) +D4(|x|+|y|)∆0,
dV(t)

dt
6 −D3(x

2 + y2) +
√

2D4∆0(x
2 + y2)

1
2 .

Moreover,
dV(t)

dt
6 −D3(x

2 + y2) +D5(x
2 + y2)

1
2 , (3.2)

where D5 =
√

2D4∆0. Choose
(x2 + y2)

1
2 > D6 = D5D

−1
3 .

Inequality (3.2) implies that
dV(t)

dt
6 −D3(x

2 + y2).

So, we have a D7 such that
dV(t)

dt
6 −D7,

provided x2 + y2 > D7D
−1
3 .

Thus, (3.2) satisfies the conditions of [2, Lemma 2.2] and [21, Lemmas 2 and 3]. The conclusion of
the proof of Theorem 3.1 may now be obtained by the use of inequalities (2.2) and (2.4) and an obvious
adaptation of the reasoning in [17]. Hence, we omit this part of the proof.
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4. Numerical example

Consider (1.1) in the form

x ′ = 12y+ 0.2x(t− ρ(t)) +
0.01x(t− ρ(t))

1 + x2 ,

y ′ = 10y+ 0.3x(t− ρ(t)) +
0.01x(t− ρ(t))

1 + x2 +
1

1 + t2 + x2 + y2 ,
(4.1)

with equivalent system of (4.1) as

x ′ = 12y+
(

0.2x+
0.01x
1 + x2

)
+

∫t
t−(ρ(t))

(
0.2 +

0.01
1 + x2(s)

)
ds,

y ′ = 10y+
(

0.3x+
0.01x
1 + x2

)
+

∫t
t−(ρ(t))

(
0.3 +

0.01
1 + x2(s)

)
ds+

1
1 + t2 + x2 + y2 .

(4.2)

Comparing (1.2) with (4.2), it is easy to see that a = 12 and b = 10, and

q1(x) =

(
0.2x+

0.01x
1 + x2

)
and q2(x) =

(
0.3x+

0.01x
1 + x2

)
.

It is obvious from the equations that

q1(x)

x
> 0.2 = δ > 0, x 6= 0,

q2(x)

x
> 0.3 = ν > 0, x 6= 0,

and

(aν− bδ) = 1.6 > 0.

Also,

|q ′1(x)| 6 0.21 = L and |q ′2(x)| 6 0.31 =M.

Since 0 6 ε 6 1, choosing ε = 0.5, we have

η < min{0.54, 93.01}.

If we choose η = 0.5, then ρ(t) 6 0.5, if the delay is extended beyond this interval, the behavior of solution
of (4.1) may also be useful. Finally,

p(t, x,y) =
1

1 + t2 + x2 + y2 6
1

1 + t2 6 1.

Thus, all the conditions of Theorems 2.1 and 3.1 are satisfied. The trivial solution of (4.1) is asymptotically
stable and the solution of the same equation is ultimately bounded.

Figures 1 and 2 show that the solution (xt,yt) of the delay system (4.1) is asymptotically stable
as t → ∞ and in Figure 3, the parametric plot of x(t) versus y(t) shows the trajectory of solution of
system (4.1) remains stable as t increases and the delay function causes the trajectory to be bounded as
t → ∞. Figure 4 shows the direction field associated with the system (4.1) showing that the solution is
asymptotically stable for ρ(t) = 0.5, that is, the origin is a stable spiral. Figures 5 and 6 show that the
solution (xt,yt) of the delay system (4.1) is ultimately bounded by a single constant.
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Figure 1: The plot of x(t) (in blue) and y(t) (red) satisfying
the conditions of Theorem 2.1 if ρ(t) = 0.5 and p = 0 for
0 6 t 6 10.
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Figure 2: The plot of x(t) (in blue) and y(t) (red) satisfying
the conditions of Theorem 2.1 if ρ(t) = 0.5 and p = 0 for
0 6 t 6 1000.
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Figure 3: The parametric plot of x(t) versus y(t) satisfying
the conditions of Theorem 2.1 if ρ(t) = 0.5 and p = 0 for
0 6 t 6 10 cycle and 0 6 t 6 1000 cycle.
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Figure 4: The direction field associated with the delay system
(4.1) satisfying the conditions of Theorem 2.1 and ρ(t) = 0.5
together with several solutions of the system.

Out[ ]=

20 40 60 80

-4.×10-14

-3.×10-14

-2.×10-14

-1.×10-14

1.×10-14

2.×10-14

3.×10-14

x[t]

Figure 5: The boundedness of x(t) of system (4.1) satisfying
the conditions of Theorems 2.1 and 3.1 with ρ(t) = 0.5 and
p 6= 0 as t→∞.
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Figure 6: The boundedness of y(t) of system (4.1) satisfying
the conditions of Theorems 2.1 and 3.1 with ρ(t) = 0.5 and
p 6= 0 as t→∞.
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