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Abstract
In this particular paper the connection of fuzzy implications to the basic concepts of probability theory such as copula,

quasi-copula and semi-copula is being studied. This study showed that fuzzy implications produced through copula, quasi-
copula or semi-copula, apart from having as a common characteristic the Lipschitz condition with constant 1, this characteristic
is also the cornerstone for grouping fuzzy implications according to the original generator which is no other than a copula,
quasi-copula or semi-copula.
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1. Introduction

Probabilistic S- Implications and fuzzy implications based on semicopulas introduced by Przemys-
law Grzegorzewski and Michal Baczynski, Przemyslaw Grzegorzewski, Radko Mesiar, Piotr Helbin and
Wanda Niemyska, respectively, have attracted the research interest of many scientists specializing in fuzzy
implications. The above papers connect the concept of fuzzy implication with probability theory and
specifically with the quasi-copula, copula and semicopula conjuctors. All the above effort is being made
in the context of a reasoning in problems where logic and randomness interact, consequently Aristotle
logic is not enough. This particular work becomes the bridge between fuzzy implications and a special
category of aggregations functions, of conjunctive aggregations functions, trying as much as possible
to provide the appropriate tools for the production of fuzzy implications that interact with probability
theory. Also through this bridge connection it is proved that the set of all probabilistic S-Implications
is a subset of fuzzy implications I(x,y) = 1 −Q(x, 1 − y) for some quasi-copula Q. The structure of the
paper follows the following pattern. Initially, the basic definitions and propositions that will be needed
are provided. The new results are then given with the proofs and examples where necessary, along
with grouping of the fuzzy implications. Specifically, two classes of implications are defined, the first
being: ”the family of fuzzy implications of copula” and the second: ”the family of fuzzy implications of
quasi-copula” and in fact the first is a subset of the second.
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2. Basic notions

In this paragraph we recall the basic theory that we will be needed to understand the key points of
this paper.

2.1. Aggregation functions
Aggregation functions combine is the process of combining several numerical values into a single

representative value, and an aggregation function performs this operation. Many well-known binary
aggregation operators, such as the arithmetic mean, the product, Min and Max operators, as well as
weighted means aggregation operators (for more details see, e.g., [11]). Apart from the theoretical exten-
sions of these functions that penetrate several concepts of mathematics such as copulas, quasi-copulas,
stochastic processes and other, these also have diverse applications, including approximate reasoning,
control systems, image processing, etc.

Definition 2.1 ([4, 13]). A mapping A : [0, 1]2 → [0, 1] is called a binary aggregation function whenever

(A1) it is non-decreasing in both variables, i.e., for all x1, x2,y1,y2ε [0, 1] with x1 6 x2,y1 6 y2 implies
A(x1,y1) 6 A(x2,y2);

(A2) A (0, 0) = 0, A (1, 1) = 1.

The class of all binary aggregation functions will be denoted by A.

Definition 2.2 ([11]). An aggregation function A is called conjunctive aggregation function whenever
0 6 A 6 Min.

Obviously, the smallest aggregation function A⊥(x,y) =

{
1, if (x,y) = (1, 1),
0, otherwise, is also the smallest

conjunctive aggregation function, while Min is the greatest conjunctive aggregation. Though more ex-
planation will be given in subsequent sections, we list here some distinguished classes of conjunctive
aggregation functions.

Definition 2.3 ([11]). Let A : [0, 1]2 → [0, 1] be an aggregation function.

(bwt-norm) A is a boundary weak triangular norm (bwt-norm for short) if it is associative, i.e.,
A(x,A(z,y)) = A(A(x,y), z) and symmetric, i.e., A (x,y) = A (y, x) conjunctive aggregation func-
tion.

(SC) If A has a neutral element e = 1, i.e., A (x, 1) = A (1, x) = x, then A is called semi-copula.

(t-norm) A is a triangular norm (t-norm in short) if it is bwt-norm and a semi-copula.

(QC) A is a quasi-copula if it is a conjunctive aggregation function and satisfies the Lipschitz condition
with constant 1, i.e., such that for all x,y,u, vε[0, 1] we have |A (x,y) −A (u, v)| 6 |x− u|+ |y− v|.

(C) A is a copula if it is a semi copula and fulfills the moderate growth property, i.e., such that for all
x,y,u, vε[0, 1] with x 6 u,y 6 v, we have A (x,y) +A (u, v) > A (x, v) +A (u,y).

We will then look at the definitions of copula, semi-copula and quasi-copula from a different perspec-
tive. Since definitions are equivalent, we just resorted to the definition of the above concepts through
aggregation functions in order to be able to connect aggregation functions with fuzzy implications.

Proposition 2.4 ([13] or [16]). For any AεA the mapping Ā : [0, 1]2 → R by

Ā(x,y) = x+ y−A(x,y) (2.1)

is an aggregation function only if A is 1-Lipschitz aggregation function.
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Remark 2.5 ([13]). In the class A(1) of all 1-Lipschitz aggregation functions, the construction method
:̄A(1) → A(1) defined by equation (2.1) is an involutive mapping. Another involutive construction method
on A(1) as in [19] is the reverse :̂A(1) → A(1) given by

Â(x,y) = x+ y− 1 −A(1 − x, 1 − y).

Definition 2.6 ([13]). For any aggregation function AεA we can define two mappings A∗,A∗ : [0, 1]2 → R

given by
A∗ (x,y) = y+A (1, 0) −A(1 − x,y), A∗ (x,y) = x+A (0, 1) −A(x, 1 − y).

Proposition 2.7 ([13, Theorem 1]). Let AεA. Then A∗εA(A∗εA) if and only if

(i) A is 1-Lipschitz in the second variable (first variable respectively); and
(ii) A (0, 1) = A (1, 0).

2.2. Copula, quasi copula, and semi copula
Copulas play a key role in the probability theory and statistics. The basic result in this context is

Sklar’s Theorem [18]. The family of functions that generalize copulas are quasi copulas, while the family
of quasi copulas belongs to a wider family, the family of semi copula and the semi copula belongs to the
family of conjunctive aggregation functions see Definition 2.3. A very good picture of the above families
is given in Figure 1.

Figure 1: Relations between various binary aggregation functions.

Definition 2.8 ([18]). A copula (specifically, a 2-copula) is a function C : [0, 1]2 → [0, 1] which satisfies the
following condition

(C1) C (x, 0) = C (0,y) = 0 for all x,yε [0, 1];
(C2) C (x, 1) = x for all xε [0, 1];
(C3) C (1,y) = y for all yε [0, 1];
(C4) C (x2,y2) − C (x2,y1) − C (x1,y2) + C (x1,y1) > 0 for all x1, x2,y1,y2ε [0, 1] such that x1 6 x2 and

y1 6 y2.

The family of all copulas will be denoted by C.

Remark 2.9 ([18]). The following is very useful for the sequel: for each copula C, the following functions
C∗,C∗, Ĉ : [0, 1]2 → [0, 1] are copulas too:

C∗ (x,y) = x−C (x, 1 − y) , (2.2)
C∗ (x,y) = y−C(1 − x,y), (2.3)

Ĉ(x,y) = x+ y− 1 −C(1 − x, 1 − y). (2.4)
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Several interesting families of copulas, like Fréchet’s family, Farlie-Gumbel-Morgenstern’s family,
Marshall-Olkin’s family, etc, are considered in the literature. It can be shown that every copula is
bounded by the so-called Fréchet-Hoeffding bounds, i.e., for any copula C and for all x,yε[0, 1] ap-
plies W(u, v) 6 C(u, v) 6 M(u, v), where, W (u, v) = max {u+ v− 1, 0} and M(u, v) = min {u, v} are also
copulas. For more information on copulas, we refer the reader to the famous monograph by Nelsen [18].
The importance of the copulas is clarified by the Sklar theorem showing that copulas link joint distribu-
tion functions to their one-dimensional margins. Many scientists have focused on the theory of copulas,
providing numerous and interesting families of copulas, like Fréchet’s family, Marshall-Olkin’s family
etc. due to the fact that in general Copulas are neither symmetric (i.e., C(x,y)=C(y,x)) nor associative (i.e.,
if C (x,C (y, z)) = C (C (x,y) , z) hold, then C is associative, different will be called non associative). In
general, we will provide the following example as a symmetric but non associative case and a copula case
where it is symmetric and associative.

Example 2.10.

(i) The Farlie-Gumbel-Morgenstern family of copulas symmetric but not associative. For λ 6= 0 is given
by CFGMλ = (x,y) = xy+ λxy(1 − x)(1 − y) for λ ∈ [−1, 1].

(ii) A linear combination C = pΠ(x,y) + (1 − p)min {x,y} is another case of a general non associative
symmetric copula where pε(0, 1) and Π (x,y) = xy.

(iii) We must note that the copulas Π (x,y) = xy and min {x,y} are symmetric and associative.

In order to generalize the notion of copulas, quasi-copulas of were introduced by Alsina et al. [1] as
special functions.

Definition 2.11 ([10, 11]). A function Q : [0, 1]2 → [0, 1] which satisfies conditions (C1)-(C3) and

(C4’) Q (x2,y2)−Q (x2,y1)−Q (x1,y2)+Q (x1,y1) > 0 for all x1, x2,y1,y2ε [0, 1] such that x1 6 x2,y1 6 y2,
where at least one of all x1, x2,y1,y2 belongs to {0, 1},

is called a quasi-copulas. The set of all quasi-copulas will be denoted by QC.

Remark 2.12 ([2, 11]).

(a) The condition (C4’) is equivalent to the following two conditions.
(i) Implies (A1), i.e., the functions Q are non-decreasing in each variable; and

(ii) Q satisfy the 1-Lipschitz property, i.e., such that for all x,y,u, vε[0, 1] we have |Q (x,y)−Q (u, v)|6
|x− u|+ |y− v|.

(b) It becomes apparent that Definition 2.11 and definition 2.3 with respect to quasi-copula are equivalent
definitions, i.e., a quasi-copula is a conjunctive aggregation function which satisfies the 1-Lipschitz
property and vice versa, is a conjunctive aggregation function which satisfies the 1-Lipschitz property
is a quasi-copula.

(c) It is clear that every copula is a quasi-copula. Quasi-copulas that are not copulas are called proper
quasi-copulas.

(d) An interesting example of a symmetric quasi-copula which is not a copula is given by Q = Med(a, TL,
Π),a ∈ (0, 1), where TL = max {x+ y− 1, 0} (see [11]).

e. It is evident that each associative quasi-copula is also an associative copula (see [11]).

Remark 2.13 ([5, 13]). As in Remark 2.9 we have, for each quasi-copula Q, the functions Q∗, Q∗, Q̂ :
[0, 1]2 → [0, 1] are quasi-copula too:

Q∗ (x,y) = x−Q (x, 1 − y) , (2.5)
Q∗ (x,y) = y−Q (1 − x,y) , (2.6)

Q̂ (x,y) = x+ y− 1 +Q (1 − x, 1 − y) . (2.7)
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Another set aggregation function which is worth noting is a semi-copula [19]. Semi-copulas are known
under several different names, e.g., conjunctors [11], weak t-norms [9], etc.

Definition 2.14 ([6, 7, 19]). A function B : [0, 1]2 → [0, 1] is called semi-copula if it satisfies conditions (C2),
(C3), and (A1), i.e.,

(C2) B (x, 1) = x for all xε [0, 1];
(C3) B (1,y) = y for all yε [0, 1];
(A1) it is non-decreasing in both variables, i.e., for all x1, x2,y1,y2ε [0, 1] with x1 6 x2,y1 6 y2 implies

B(x1,y1) 6 B(x2,y2).

The family of all semi-copulas will be denoted by (SC).

Lemma 2.15 ([19]). Each semi-copula satisfies condition (C1).

Proof. By Definition 2.14 we have 0 6 B (x, 0) 6 B (1, 0) = 0, 0 6 B (0,y) 6 B (0, 1) = 0, therefore B (x, 0) =
B (0,y) = 0, i.e., satisfies condition (C1).

From the above definitions and propositions, the connections and overlaps that exist in the concepts of
aggregation functions, copula, quasi-copula and semi-copula become apparent. The following proposition
attempts to put in order these concepts as well as their overlaps.

Proposition 2.16 ([19]).

(i) A semi-copula C which satisfies condition (C4), is a copula.
(ii) A semi-copula Q which satisfies the 1-Lipschitz property is a quasi-copula.

Proposition 2.17.

1. A semi-copula C is an aggregation function which has a neutral element e = 1 (see Definition 2.3 or Remark
2.12).

2. For each semi-copula B which is 1-Lipschitz in the first variable, the following function, B∗ : [0, 1]2 → [0, 1],
is semi-copula too (see [13])

B∗ (x,y) = x−B (x, 1 − y) . (2.8)

3. For each semi-copula B which is 1-Lipschitz in the second variable, the following function, B∗ : [0, 1]2 → [0, 1]
is semi-copula too (see Proposition 2.7)

B∗ (x,y) = y−B(1 − x,y). (2.9)

Proposition 2.17 will be needed to link some of the results of Probabilistic S-Implications (see [12])
and Fuzzy implications papers, based on semicopulas (see [2]).

2.3. Fuzzy implications and fuzzy negations
In the international literature, we can find several definitions of fuzzy implication based on the char-

acteristic properties of classical implication. In this paper we will use the equivalent definition proposed
by Kitainik [14] (see also Foodor and Roubens [8]), below we quote the definition of fuzzy implication
with its properties.

Definition 2.18. A function I : [0, 1]2 → [0, 1] will be considered to be a fuzzy implication if it satisfies for
each x, x1, x2,y,y1,y2 ∈ [0, 1] the following:

(I1) x1 6 x2, then I (x1,y) > I (x2,y) decreasing with respect to the 1st variable;
(I2) y1 6 y2, then I(x,y1) 6 I(x,y2) increasing to the 2nd variable (elsewhere the term non-decreasing is

used);
(I3) I (0, 0) = 1;



G. Souliotis, M. Rassias, B. Papadopoulos, J. Nonlinear Sci. Appl., 16 (2023), 99–110 104

(I4) I (1, 1) = 1;
(I5) I (1, 0) = 0.

We will denote the class of all fuzzy implications by I. Directly from Definition 2.18 we can deduce
that each fuzzy implication I satisfies the following properties:

(LB) left boundary condition I (0,y) = 1, yε[0, 1];
(RB) Right boundary condition I (x, 1) = 1, xε[0, 1].

We list the most important additional properties of implications. Most are generalizations of bivalent
logic.

(NP) Neutrality property I (1,y) = y, yε[0, 1];
(EP) Exchange principle I (x, I (y, z)) = I (y, I (x, z)) , y, x, z ∈ [0, 1];
(IP) Identidy principle I (x, x) = 1, x ∈ [0, 1];

(OP) Ordering property I (x,y) = 1⇐⇒ x 6 y, x,y ∈ [0, 1].

Example 2.19. The following functions from [0, 1]2 → [0, 1] −→ [0, 1] are common examples of fuzzy
implications:

(IŁ) the Łukasiewicz fuzzy implication IL(x,y) = min {1, 1 − x+ y};
(IR) the Reichenbach fuzzy implication IR (x,y) = 1 − x+ xy;

(IKD) the Kleene-Dienes fuzzy implication IKD(x,y) = max {1 − x,y};

(IGG) the Goguen fuzzy implication IGG(x,y) =
{

1, if x 6 y,
y
x , otherwise.

In the theory of fuzzy logic as well as in classical logic, negation plays a decisive role, and the following
definition is given.

Definition 2.20 ([15]). A non-increasing function N : [0, 1] → [0, 1] is called a fuzzy negation if N (0) =
1, N (1) = 0. Moreover, a fuzzy negation N is called strict if it is strictly decreasing and continuous; strong
if it is involution, i.e., N(N(x) = x for all xε [0, 1].

Example 2.21. The following functions N : [0, 1]→ [0, 1] are common examples of fuzzy strong negations.

Sugeno class Nλ (x) = 1−x
1+λx , λ ∈ (−1,+∞);

Yager class Nw (x) = (1 − xw)
1
w , w ∈ (0,+∞);

Classical negation NC(x) = 1 − x, which is the one and only 1-Lipschitz fuzzy negation, i.e., |f(x1) −
f(x2)| 6 |x1 − x2|, for all x1, x2ε[0, 1] (see [2]) and

Conical negation NCN (x) =
√

(m2 − 1) x2 + 1 +mx, x ∈ [0, 1] , m 6 0 (see [20]).

One of the most important tautologies in the classical logic is the law of contraposition:

1. p→ q ≡ ¬q→ ¬p and its variants;
2. ¬p→ q ≡ ¬q→ p;
3. p→ ¬q ≡ q→ ¬p.

Consequently, we can consider different laws of contraposition in fuzzy logic.

Definition 2.22 ([3]). Let I ∈ I and N be a fuzzy negation. I is said to satisfy

• low of contraposition (or, the contrapositive symmetry) with respect to N, if I(x,y) = I(N(y),N(x)),
x,yε[0, 1] (CP);

• low of left contraposition with respect to N, if I (N(x),y) = I (N (y) , x), x,yε [0, 1] (L-CP);

• low of right contraposition with respect to N, if I (x,N(y)) = I (y,N (x)) , x,yε [0, 1] (R-CP).
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2.4. Constructing family of fuzzy implications from semi-copula
In Grzegorzewski’s paper entitled probabilistic implications (see [12]) he introduced probabilistic S-

implications creating a bridge of fuzzy implications with copulas, specifically: a function IC : [0, 1]2 →
[0, 1] given by

IC(u, v) = C (u, v) − u+ 1, (2.10)

where C which is any copula, is a fuzzy implication which is called a probabilistic S-implication. Some
of the properties that probabilistic S-implications can satisfy are as following.

Proposition 2.23.

(i) A probabilistic S-implication IC based on a copula satisfies the left neutrality principle (NP).
(ii) A probabilistic S-implication IC based on a copula satisfies the identity principle if and only if IC is the

Łukasiewicz implication, i.e., IC(x,y) = ILK(x,y) = min{1, 1 − x+ y}.
(iii) A probabilistic S-implication IC based on a copula satisfies the ordering principle if and only if IC is the

Łukasiewicz implication.

From another point of view the authors of [2] studied among other fuzzy implication,

I (x,y) = 1 −Q(x, 1 − y) (2.11)

for some quasi-copula Q. In fact, they proved that the only fuzzy implications (based on Definition
2.18) that satisfies 1-Lipschitz property, are given by equation (2.11) and vice versa. Later Mesiar and
Kolesárová in [17] completed the above effort with the following notes.

Proposition 2.24 ([17]). For every semi-copula B ∈ SC and I ∈ I we have

(i) the function IB : [0, 1]2 → [0, 1] given by

IB (x,y) = 1 −B(x, 1 − y) (2.12)

is a fuzzy implication;
(ii) the function BI : [0, 1]2 → [0, 1] given by

BI (x,y) = 1 − I(x, 1 − y) (2.13)

is a semi-copula, i.e., B ∈ SC;
(iii) BIB = B and IBI = I.

They also led to additional fuzzy implications, which are given in the following proposition.

Proposition 2.25 ([17]). For every quasi-copula Q ∈ QC the following functions I : [0, 1]2 → [0, 1] are fuzzy
implications:

I (x,y) = 1 − x+Q(x,y), (2.14)
I (x,y) = y+Q(1 − x, 1 − y), (2.15)
I (x,y) = y+ 1 − x−Q(1 − x,y). (2.16)

As we see, the connection of fuzzy implications and semi-copula and consequently of quasi-copula
and copula has been studied a lot. However in the next paragraph we will show that the fuzzy implica-
tions studied in the aforementioned papers besides being made by quasi-copulas, have another common
feature. They constitute different manifestations of the same implication. That is, let assume that we have
the implication I1 (x,y) = 1 − x+Q1 (x,y) produced by the quasi-copula Q1(x,y), then there is a unique
Q2 (x,y) ∈ QC that produces the implication I1 (x,y) = 1 − x+Q1 (x,y) produced by the quasi-copula
Q1(x,y), then there is a unique Q2 (x,y) ∈ QC that produces the implication I2 (x,y) = 1−Q2 (x, 1 − y) so
that I1 (x,y) = I2 (x,y) for each x,yε [0, 1].
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3. Results

Next in this paper, we will formulate the corresponding result of Proposition 2.25, but for copulas
which as we know satisfies condition 1-Lipschitz, thus defining the family of fuzzy implications of copula.

3.1. The family of fuzzy implications of copula
Proposition 3.1. For every copula C ∈ C the following functions, I : [0, 1]2 → [0, 1] are fuzzy implications:

I (x,y) = 1 −C(x, 1 − y), (3.1)
I (x,y) = y+C(1 − x, 1 − y), (3.2)

I (x,y) = y+ 1 − x−C(1 − x,y), (3.3)
and

IC (x,y) = 1 − x+C(x,y), (3.4)

where is a probabilistic S-implication (see equation (2.10)).

Proof. We can easily see from Remark 2.12, which tells us, every copula is a quasi-copula, therefore: from
I (x,y) = 1 −Q(x, 1 − y) (equation (2.11)) we have I (x,y) = 1 −C (x, 1 − y). Similarly, equations (3.2) and
(3.3) are the result of Proposition 2.25, but simply in place of quasi-copula Q we put a copula C. While
for the proof of equation (3.4) see ([12]).

The question is the following: are implications mentioned in Proposition 3.1 different from each other?
The answer to this question is given in the following proposition.

Proposition 3.2.

(i) For each copula C ∈ C that produces fuzzy implications IC (x,y) = 1− x+C (x,y), there is a unique C∗ that
produces fuzzy implication IC∗ (x,y) = 1 −C∗ (x, 1 − y), such that, IC (x,y) = IC∗ (x,y).

(ii) For each copula C ∈ C and fuzzy implication IC (x,y) = 1 − x+C (x,y), there is a unique C∗ that produces
fuzzy implication IC∗ (x,y) = y+ 1 − x−C∗ (1 − x,y), such that, IC (x,y) = IC∗(x,y).

(iii) For each copula C ∈ C and fuzzy implication IC (x,y) = 1 − x+C (x,y), there is a unique Ĉ that produces
fuzzy implication IĈ (x,y) = y+ Ĉ (1 − x, 1 − y), such that, IC (x,y) = IĈ(x,y).

Proof. From Remark 2.9 we have the following, for each copula C, the following functions C∗,C∗, Ĉ with
equations (2.2), (2.3), and (2.4) are copulas too.

(i) We have from equation (2.2) that there is copula C∗, such as C (x,y) = x−C∗ (x, 1 − y), by substitution
in equation (2.7) for each x,yε[0, 1] we have:

IC (x,y) = 1 − x+C (x,y) = 1 − x+ x−C∗ (x, 1 − y) = 1 −C∗ (x, 1 − y) = IC∗ (x,y) .

Similarly for cases (ii) and (iii), so we finally have:

IC (x,y) = IC∗ (x,y) = IC∗ (x,y) = IĈ (x,y) , for each x,y ∈ [0, 1] .

Therefore we have four ”different” implications that produce exactly the same space of fuzzy implica-
tions and as a representative of them we keep the following equation

I (x,y) = 1 −C (x, 1 − y) .

Conclusion 3.3. The above implication with formula I(x,y) = 1−C(x, 1−y) of equations (2.10), (3.2), and
(3.3) expresses the total of fuzzy implications and only those that are produced by all copula C ∈ C. The
family of all fuzzy implications produced via copulas will be denoted by IC.
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An example is given below.

Example 3.4. Let us consider the upper Fréchet-Hoeffding bound M (x,y) = min{x,y}. The fuzzy impli-
cation based on M is

IM (x,y) = min {x,y}− x+ 1 = min {x− x+ 1,y− x+ 1} = min {1,y− x+ 1},

which is nothing else than the Łukasiewicz fuzzy implication (IL), IM (x,y) = IL(x,y). From the forms
(2.2), (2.3), and (2.4), and C(x,y) =M(x,y) we have respectively:

(i) M∗ (x,y) = x−M (x, 1 − y) = x− min {x, 1 − y} = max {0, x+ y− 1} = W(x,y), then, IM∗ (x,y) =
1 −M∗ (x, 1 − y) = 1 − max {0, x+ 1 − y− 1} = 1 + min {0,y− x} = min {1, 1 − x+ y} = IL(x,y).

(ii) Similarly M∗ (x,y) = y−M (1 − x,y) = y− min {1 − x,y} = max {y+ x− 1, 0} = W(x,y). Therefore,
IM∗ (x,y) = y+ 1 − x−M∗ (1 − x,y) = y+ 1 − x− max {y+ 1 − x− 1, 0} = y+ 1 − x+ min {x− y, 0}
= min {1,y− x+ 1} = IL(x,y).

(iii) M̂ (x,y) = x+ y− 1 +M (1 − x, 1 − y) = x+ y− 1 + min {1 − x, 1 − y} = min{x+ y− 1 + 1 − x, x+
y − 1 +1 − y} = min{y, x}. Therefore, IM̂ (x,y) = y + M̂ (1 − x, 1 − y) = y + min {1 − x, 1 − y} =
min {y− x+ 1, 1} = IL (x,y).

The following are some of the properties that are satisfied in Subsection 2.3.

Lemma 3.5. Each I ∈ IC satisfies the neutrality principle (NP).

Proof. Actually, I (1,y) = 1−C (1, 1 − y) = 1− 1+ y = y for every y ∈ [0, 1], which means that each I ∈ IC

satisfies (NP).

Lemma 3.6. The only fuzzy implication I ∈ IC which satisfies the identity principle (IP) is the Łukasiewicz
implication.

Proof. From the equation (3.1) we have

I (x, x) = 1⇐⇒ 1 −C (x, 1 − x) = 1⇔ C (x, 1 − x) = 0 (3.5)

for every x ∈ [0, 1], according to equation (2.2) there exists copula C∗ such that

C∗ (x, x) = x−C (x, 1 − x) . (3.6)

From (3.5) and (3.6) we have C∗ (x, x) = x for every x ∈ [0, 1], therefore, the copula C∗ is idempotent (see
Definition 2.35 and Proposition 3.1. in [11]). However, the only idempotent copula is M (x,y) = min(x,y),
therefore I (x,y) = 1 − x+ min {x,y} = min {1, 1 − x+ y} , i.e., the only fuzzy implication I ∈ IC which
satisfies the identity principle (IP) is the Łukasiewicz implication.

Lemma 3.7. The only fuzzy implication I ∈ IC which satisfies the ordering principle (OP) is the Łukasiewicz
implication.

Proof. If I = IL, then (OP) holds. To see the opposite, i.e., (OP) satisfied then apply the (IP), from
Lemma 3.6 the only fuzzy implication I ∈ IC which satisfies the identity principle (IP) is the Łukasiewicz
implication.

Lemma 3.8. If I ∈ IC, based on a copula C where C is symmetric and associative, then I satisfies exchange principle
(EP), i.e., I (x, I (y, z)) = I (y, I (x, z)) , x,y, zε[0, 1].
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Proof. Let I ∈ IC, then there exists a copula C such as I (x,y) = 1 −C (x, 1 − y). Also C is symmetric and
associative, i.e., C (x,y) = C(y, x) symmetric and C (x,C (y, z)) = C (C(x,y) , z) associative. We will have
that the following property also applies

C (x,C (y, z)) =
associative

C (C (x,y) , z) =
symmetric

C (C (y, x) , z) =
associative

C (y,C (x, z)) .

In short
C (x,C (y, z)) = C (y,C (x, z)) . (3.7)

Therefore I (x, I (y, z)) = 1 − C (x, 1 − I (y, z)) = 1 − C (x, 1 − (1 −C(y, 1 − z)) = 1 − C (x,C (y, 1 − z)) =
(3.3)

1 −C (y,C (x, 1 − z))=1 −C (y, 1 − (1 −C(x, 1 − z))=1 −C (y, 1 − I (x, z))= I (y, I (x, z)), i.e., I (x, I (y, z))=
I (y, I (x, z)) , y, x, zε[0, 1] so I satisfies exchange principle (EP).

An additional very important element that characterizes the IC family is the 1-Lipchitz property that
you are satisfied with all the fuzzy implications of this family. Proof is given by the next lemma.

Lemma 3.9. Let I be a fuzzy implication in IC. Then I is1-Lipschitz.

Proof. Since I ∈ IC, there exist copula C which, as we know is 1-Lip, given by the formula I (x,y) =
1 − C (x, 1 − y) (see (2.8)). Then, for x1 6 x2,y1 6 y2 we have |I(x1,y1) − I(x2,y)| = |1 − C(x1, 1 − y1) −
(1 − C(x2, 1 − y2))| = |1 − C(x1, 1 − y1) − 1 + C(x2, 1 − y2)| = |C(x1, 1 − y1) − C(x2, 1 − y2)| 6 |x1 − x2| +
|1 − y1 − (1 − y2)| 6 |x1 − x2|+ |y1 − y2|, so I is 1-Lipschitz.

3.2. The family of fuzzy implications of quasi-copula

Let’s attempt to extend family IC and in place of copula let’s place their extension, quasi-copula. This
becomes feasible with transformation of the formulas (2.5), (2.6), (2.7), as

Q∗ (x,y) = x−Q (x, 1 − y) , Q∗ (x,y) = y−Q (1 − x,y) , Q̂ (x,y) = x+ y− 1 +Q (1 − x, 1 − y) .

Also the following is proved by the paper of Michał Baczyński et al., entitled “Fuzzy implications based
on semicopulas” (see[2]) as follows.

Proposition 3.10 ([2, Lemma 2.13]). Let I be a Fuzzy implication. Then, I is 1-Lipscitz if and only if I (x,y) =
1 −Q(x, 1 − y) for some quasi-copula Q.

The result of the above is the total of fuzzy implications which satisfies 1-Lipschitz property, being
produced solely by formation (2.11). Furthermore, in accordance with transformations (2.5), (2.6), and
(2.7) and fuzzy implications in Proposition 2.25 we are led to (exactly as happened in Subsection 3.1 “The
family of fuzzy implications of copula” and Proposition 3.2) the fact that all fuzzy implications produced
by equations (2.14), (2.15), and (2.16), that were set in the paper [17] are nothing but different forms
of equation I(x,y) = 1 −Q(x, 1 − y). The following proposition follows similar steps and proofs as in
Proposition 3.2.

Proposition 3.11.

(i) For each copula Q ∈ Q that produces the fuzzy implication IQ (x,y) = 1 − x+Q (x,y), there is a unique Q∗
that produces the fuzzy implication IQ∗ (x,y) = 1 −Q∗ (x, 1 − y), such that, IQ (x,y) = IQ∗ (x,y).

(ii) For each copula Q ∈ Q and fuzzy implication Q (x,y) = 1 − x+Q (x,y), there is a unique Q∗ that produces
the fuzzy implication IQ∗ (x,y) = y+ 1 − x−Q∗ (1 − x,y), such that, IQ (x,y) = IQ∗(x,y).

(iii) For each copula Q ∈ Q and fuzzy implication IQ (x,y) = 1 − x+Q (x,y), there is a unique Q̂ that produces
the fuzzy implication IQ̂ (x,y) = y+ Q̂ (1 − x, 1 − y), such that, IQ (x,y) = IQ̂(x,y).
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In brief, the implication with formation I (x,y) = 1−Q (x, 1 − y) with its equivalent expressions (2.11),
(2.12), and (2.13) expresses the total of fuzzy implications and of only those produced by quasi-copula
Q ∈ Q. The family of all fuzzy implications produced via quasi-copulas will be denoted by IQ. The space
of all fuzzy implications which is 1-Lipschitz (let’s denote it by I1−Lip) is identical with the space of all
fuzzy implications produced via quasi-copulas, i.e., IQ = I1−Lip. Finally, we have IC ⊂ IQ = I1−Lip, a
good picture of the above families is provided in Figure 2.

Figure 2: Relations between families IC, IQ, I1−Lip.

Remark 3.12. Due to the affinity of copula and quasi-copula, the properties of Lemmas 3.5, 3.6, and 3.7 are
valid under the same conditions in the family of fuzzy implications IQ as well, that is,

(i) each I ∈ IQ satisfies the neutrality principle (NP);
(ii) the only fuzzy implication I ∈ IQ which satisfies the identity principle (IP) is the Łukasiewicz

implication;
(iii) the only fuzzy implication I ∈ IQ which satisfies the ordering principle (OP) is the Łukasiewicz

implication;
(iv) if I ∈ IQ, based on quasi-copula Q, where Q is symmetric and associative, then I satisfies exchange

principle (EP), i.e., I (x, I (y, z)) = I (y, I (x, z)) , y, x, z ∈ [0, 1]. Here we must stress that each associa-
tive quasi-copula Q is also an associative copula (see [11]), therefore Lemma 3.8 applies.

The next proposition declares that the fuzzy implications that belong in family IQ and consequently
IC fully satisfy the laws of contrapositive with respect to classical negation NC(x) = 1 − x under one
condition, the quasi-copulas that produce implication I are symmetric.

Proposition 3.13. If I ∈ IQ and consequently I ∈ IC and Q and C that produce implication I are symmetric, then

(i) I satisfies (CP) with respect to NC(x) = 1 − x;
(ii) I satisfies (L-CP) with respect to NC (x) = 1 − x;

(iii) I satisfies (R-CP) with respect to NC(x) = 1 − x.

Proof.

(i) I(NC(y),NC(x)) = 1 −Q(NC(y), 1 −NC(x)) = 1 −Q (1 − y, 1 − (1 − x)) = 1 −Q (1 − y, x) = 1 −
Q (x, 1 − y) = I(x,y).

(ii) I(NC(x),y) = 1 −Q(1 − x, 1 − y) = 1 −Q(1 − y, 1 − x) = I(NC(y), x).
(iii) I (x,NC (y)) = 1 − Q (x, 1 − (1 − y)) = 1 − Q (x,y) = 1 − Q (y, x) = 1 − Q (y, 1 − (1 − x)) = 1 −

Q (y, 1 −NC (x)) = I (y,NC (x)) .

4. Conclusion

The results of this paper give a very promising connection between the theory of fuzzy implications
and the theory of probabilities. It may also lead to new avenues for approximate reasoning and decision
theories. The connection of these two different worlds is achieved with the help of the links of aggregation
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functions contained in copula, semi-copula and quasi-copula, which for a strange reason also connect
different mathematical theories. Through this connection we may come quite close to understanding
the decision-making that dominates our daily lives in common experience. This work constitutes the
beginning for the continuation of the attempt to connect the stochastic process with the fuzzy implication
by studying these implications produced by aggregation functions under the influence of fuzzy negations
other than classical negation (N(x) = 1 − x).
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