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Abstract
This article concerns the numerical study of the behaviour of a flexible beam of Euler-Bernoulli to which one adds to its

internal composition a damping of the viscous type. This damping naturally exerts a dissipative force (or viscous damping force)
on the beam and opposes any deformation, in proportion to the rate of deformation. We are therefore interested in the impact
of the damper on the exponential stability of the beam. We develop here a numerical method which faithfully reproduces the
theoretical results obtained by several authors. Simulations are provided to illustrate our results.
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1. Introduction and statement of the problem

The objective of this paper is to develop a stable and convergent numerical method for a damped
Euler-Bernoulli beam with variable coefficients that confirms the theoretical results obtained in [17]. The
following Euler-Bernoulli beam with indefinite viscous damping is the issue that we will take into con-
sideration:

m(x)ytt(x, t) + (EI(x)yxx(x, t))xx + γ(x)yt(x, t) = 0, x ∈ (0, 1), t > 0, (1.1)

with the initial conditions

y(x, 0) = y0(x), yt(x, 0) = y1(x), (1.2)

and the boundary conditions

EI(0)yxx(0, t) = 0, t > 0, −EI(1)yxx(1, t) = 0, t > 0, (1.3)

where t stands for the time and x for the spatial position. The length of the beam is chosen to be unity.
The physical meanings of the various mathematical quantities are shown below:
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• m(x) is the mass density;

• EI(x) is the stiffness of the beam;

• y(x, t) denotes the transverse displacement.

In what follows, we shall always assume that:

m(x),EI(x) ∈ C4[0, 1]; m(x),EI(x) > 0.

Moreover, the viscous coefficient γ is a continuous function and nonnegative that is assumed to satisfy
the condition (see [17]) ∫ 1

0

(
γ(x)

m(x)

)(
m(x)

EI(x)

)1/4

dx > 0. (1.4)

Notice that the condition (1.4) will allow γ to be indefinite in the interval [0, 1]. The total energy associated
to the above system is (see e.g. [11, 13] and reference therein)

E(t) =
1
2

∫ 1

0
EIy2

xxdx+
1
2

∫ 1

0
my2

t dx.

After a straightforward calculation, we have

d

dt
E(t) = −

∫ 1

0
γ|yt|

2 dx 6 0. (1.5)

The expression (1.5) shows that the energy E(t) is non-increasing. Then the system is dissipative.
The following describes the range of work involved in investigating the model shown in equation (1.1)-

(1.3). The study of the exponential stability of Euler-Bernoulli problems has interested several authors.
Let us note that for a given system, the exponential stability is the most sought after because it offers the
convergence with the guarantee of a good order of convergence. Others have looked at the case where
the system would include a damping or viscous friction term with variable coefficients modelled by a
function noted γ(.). In [3], a damped Euler-Bernoulli beam with variable coefficients clamped at one end
and subjected to a force control in rotation and velocity rotation was considered. The undamped case had
already been researched in [2]. Under certain conditions, it was proved that the system is exponentially
stable. The question arose to know is that the fact of adding a damping to the first problem allows
to have an exponential stability? The answer to this question is yes. To show the exponential stability
damping system, they prove that the system operator has Riesz basis property, by setting conditions on
the parameters α and β. Following [15], a flexible beam with nonuniform thickness or density, that is
clamped at one end, submitted to a linear boundary control force in position and velocity at the free end
has been studied. A question similar to the previous one was asked in order to know the values for which
the damping system reached the exponential stability? Thanks to a theorem the condition on the value
was found. In order not to have to repeat ourselves, our problem [17] was the subject of an exponential
stability study. For these three articles mentioned no numerical study has been made for the moment
concerning one of them to our knowledge. We are interested in the numerical study of the problem
(1.1)-(1.3).

Several books have discussed the numerical analysis of Euler-Bernoulli beams in literature, and there
are various ways. It is well known that in literature (see for instance [8, 10]) to geometrically describe
the spectrum of an operator, the way used is the following: the authors use the finite differences method
[6, 12] and apply QZ method [7, 9]. At this level, we proceed differently. We rely instead on the Hermite
finite element method which is not as easy because of the numerous calculations to be performed in order
to determine the approximations of the mass, stiffness, and damping matrices.
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In Section 2, we present the main results concerning the numerical study. We rely on the weak
formulation of the problem to develop a numerical method. The discretization of this system is done
in two steps: for the discretization in space, we use the finite element method, and the Crank-Nicolson
method for the discretization in time in order to have the complete discretization. The main results on
the convergence of the numerical schemes are given in Theorems 2.4 and 2.9. The numerical method is
validated by various simulation examples, and the convergence is demonstrated in the Section 3. We are
interested in the implementation of the coefficients both in the constant and in the variable case.

2. Main results

2.1. State space, operator A, and some basic properties
This section of research is devoted to basic results, theorems, and definition. These will be very useful

for the continuation especially for the theorem concerning the stability. We will have to make sure that
this property is verified in the numerical simulations. We transform system (1.1)-(1.3) into an abstract
evolution equation on an appropriately constructed Hilbert space.

We define a Hilbert space by
H = V× L2(0, 1)

with an inner product norm in H as

‖(f,g)‖2
H :=

∫ 1

0
EI(x)|f

′′
(x)|2 dx+

∫ 1

0
m(x)|g(x)|2 dx, ∀f,g ∈H,

and
V = H2

E(0, 1) = {y ∈ H2(0, 1),y(0) = y(1) = 0}

and define a linear operator A by

D(A) = {(f,g)T ∈H|f ∈ H4(0, 1)∩V,g ∈ V, f
′′
(0) = 0, f

′′
(1) = 0}

and
A(f,g) :=

(
g,−

1
m(x)

(
(EI(x)f

′′
(x))

′′
+ γ(x)

)
g
)

.

Under these notations, system (1.1)-(1.3) can be formulated into an abstract evolution equation in H:
d

dt
w(t) = Aw(t),

w(0) = w0 ∈ H,
(2.1)

where w(t) = (y(x, t),yt(x, t)). The first result we obtain with this formulation for A is the following.

Theorem 2.1. The operator A defined as before generates a C0-semigroup of contractions on H, denoted by
{T(t)}t>0. Furthermore, A is invertible with A−1 being compact.

Proof. Let A0 and A be the operators respectively obtained of problem (1.1)-(1.3) for undamped and
damped cases. In the Theorem 2.1 of [17], A0 is a skew-adjoint operator and generates a C0-semi-group
on V, and hence A generates a C0-semi-group eAt on V. Furthermore, in the proof of Theorem 2.2 of
[17], the authors have proved that A−1 is compact on V by showing that for any G := (g1,g2) ∈ V, there
exists a unique F := (f1, f2) ∈ D(A) such that AF = G.

Thus, from Theorem 2.1, we get the theorem of stability.

Theorem 2.2. Assume that w(t) is the mild solution of (2.1) for some w0 ∈ H. Then w(t) −→ 0 in H, when
t −→∞.



B. G. Jean-Marc, Y. S. A. Joresse, T. Augustin, J. Nonlinear Sci. Appl., 16 (2023), 123–144 126

2.2. Weak formulation
Now, multiplying equation (1.1) by φ ∈ V and integrating over (0, 1), we have:∫ 1

0
muttφdx+

∫ 1

0
(EIuxx)xxφdx+

∫ 1

0
γ(x)utφdx = 0, ∀φ ∈ V, t > 0.

Integrating twice by parts and taking into account the boundary conditions it follows:∫ 1

0
muttφdx+

∫ 1

0
EIuxxφxx dx+

∫ 1

0
γutφdx = 0, ∀φ ∈ V, t > 0.

In order to give the definition of the weak solution of our problem, we rely on the work of Banks [1],
which leads us to consider two Hilbert spaces. These are X = R2 × L2(0, 1) with the inner product

< ζ,ψ >X= ζ1ψ1 + ζ2ψ2+ < mζ3,ψ3 >L2(0,1)

for all ζ = (ζ1, ζ2, ζ3), ψ = (ψ1,ψ2,ψ3) ∈ X; and Y = R2 ×H2
E(0, 1) = {ŷ = (y(1),yx(1),y);y ∈ V} with

the inner product
< ŷ1, ŷ2 >Y= 〈(y1)xx, (y2)xx〉L2(0,1) .

Y is densely embedded in X. Then the dual of X is densely embedded in the dual of Y. If we choose to
identify X with its dual Y ′ we have

Y ⊂ X ≡ X ′ ⊂ Y ′.

Then we consider two bilinear forms a1 and a2 defined by:

a1 : Y×Y −→ R (ŷ1, ŷ2) 7→ a1(ŷ1, ŷ2) =< EIŷ1, ŷ2 >Y

and
a2 : X×X −→ R (ζ,ψ) 7→ a2(ζ,ψ) =< γζ3,ψ3 >L2(0,1) .

A definition of a weak solution can now be provided.

Definition 2.3. Let T > 0 be fixed. We say that ŷ = (y(1),yx(1),y) is a weak solution of problem (1.1)–(1.3)
on (0, 1) if

ŷ ∈ L2(0, T ; Y)∩H1(0, T ; X)∩H2(0, T ; Y ′)

and satisfies
< ŷtt, φ̂ >Y,Y ′ +a1(ŷ, φ̂) + a2(ŷt, φ̂) = 0 (2.2)

for almost everywhere t ∈ (0, T) and for all φ̂ ∈ Y with the following initial conditions:

ŷ(0) = ŷ0 = (y0(1), (y0)x(1),y0) ∈ Y, ŷt(0) = ẑ0 = (z0(1), (z0)x(1), z0) ∈ X.

We admit the existence and uniqueness of the weak solution.

2.3. The Semi-discrete Approximation by FEM
In this subsection, we will approximate the original problem (1.1)-(1.3) with FEM method. Since that

(1.1) involves the spatial derivative of four orders, H2(0, 1) should possess the conforming FEM space.

2.3.1. Piecewise cubic Hermite polynomials
We assume that the Euler-Bernoulli beam is the segment [0, 1]. We divide the interval [0, 1] into a finite

number of subintervals Ii = [xi, xi+1], i = 0, 1, . . . ,n− 1, using the grid points:

0 < x0 < x1 < · · · < xn = 1,

where Ii is called element and set h = xi+1 − xi the size of this element. We define a finite-dimensional
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space as follows:

Vh = {yh ∈ C1[0, 1]|yh ∈ P3(Ii) ∀i = 0, 1, . . . ,N,yh(0) = yh(1) = y ′h(0) = y
′
h(1)},

where P3(Ii) is the space of all polynomials of degree less than or equal to 3 over the subinterval Ii.
Obviously, we have Vh ∈ V. Thus, we can write

Vh = span{φ1,φ2, . . . ,φ2n},

where we use the finite element method with cubic Hermite polynomials ψi,j (j = 1, . . . , 4) as functions
reference from which we build polynomials φi (i = 1, . . . ,N) (see [16]). With the separation of variables,
the approximate solution yh ∈ Vh, which we seek can be written as follows:

yh(x, t) =
n∑
j=0

[yj(t)φ2j−1(x) + (yj)x(t)φ2j(x)].

An advantage of this choice of discrete space and its basis is that it yields the simple relations:

yh(1, t) = yN−1(t), (yh)x(1, t) = yN(t).

Then, the finite element approximation of (1.1)-(1.3) consists in finding ŷh = (yh(1), (yh)x(1),yh) ∈
C2([0,∞); Y) or yh ∈ C2([0,∞);Vh) for all t > 0 and satisfies∫ 1

0
m(yh)ttφj dx+

∫ 1

0
EI(yh)xx(φj)xx dx+

∫ 1

0
γ(yh)tφj dx = 0 (2.3)

for all j = 1, . . . ,N and t > 0. So we look for the solution yh in the form: yh(x, t) =
∑N

i=1 yi(t)φi(x)
where yi(t) are the unknown coefficients and N = 2n is the dimension of Vh. In other words, we have:

N∑
i=1

∫ 1

0
m(yi)ttφiφjdx+

N∑
i=1

∫ 1

0
EI(yi)xx(φi)xx(φj)xxdx+

N∑
i=1

∫ 1

0
γ(yi)tφiφj dx = 0,

for all i, j = 1, · · · ,N and t > 0, with initial conditions

yh(0, .) = yh,0 ∈ Vh, (yh)t(0, .) = vh,0 ∈ Vh.

By noting Y(t) the vector representation of the function yh defined as follows:

Y = [y1,y2, . . . ,yN]T ,

(2.3) can be written by
MYtt +BYt +KY = 0. (2.4)

The matrices M,B, and K are defined by

Kij =

∫ 1

0
EI(φi)xx(φj)xxdx, Bij =

∫ 1

0
γφiφjdx, Mij =

∫ 1

0
mφiφjdx, ∀i, j = 1, · · · ,N.

M is the mass matrix, B is the viscous damping matrix, and K the rigidity matrix.

• K is symmetric, defined, and positive because EI > 0 therefore K is invertible.

• The matrix M is also symmetric, defined, and positive therefore M is invertible. Using the theory of
linear differential equations, the problem (2.4) has a unique solution. This implies the existence and
the uniqueness of the solution of (2.3).
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2.3.2. A-priori error estimates
In this subsection, the a-priori error estimates for the Galerkin solution of (2.3) shall be derived. Vh is

the space of Hermite cubic polynomials as described above. The classical method of obtaining the error
estimates presented in [5] is used. Since the Hermite cubic polynomials are used as an approximation
space, the order precision in space (H2(0, 1)) is obtained. The Hermite interpolation of the weak solution
y of Vh on V denoted by ỹ is defined as follows:

∀x ∈ (0, 1), ∀t > 0, ỹ(x, t) =
n∑

i=1

y(xi, t)φ2i−1(x) +

n∑
i=1

yx(xi, t)φ2i(x).

In addition, we make the following assumptions:

y ∈ C([0, T ];G), yt ∈ L2(0, T ;G), ytt ∈ L2(0, T ; V), (2.5)

with
G = {y ∈ H4(0, 1), y(0) = yx(0) = 0}.

Then for almost every t, we have following [5]:

‖y− ỹ‖H2(0,1) 6 Ch
2‖y‖H4(0,1), ‖yt − ỹt‖H2(0,1) 6 Ch

2‖yt‖H4(0,1), (2.6)

and according to Theorem 5.4.8 of [4], we have:

‖ytt − ỹtt‖L2(0,1) 6 Ch
2‖ytt‖H2(0,1). (2.7)

Then, the convergence theorem of the semi-discretized scheme is as follows.

Theorem 2.4. Let Vh be the space of cubic Hermite polynomials. Assume the expressions (2.5) hold. The following
error estimate holds for yh ∈ C2([0, T ];Vh), solution of (2.3),

∀t ∈ [0, T ],
[
E(t,yh − y)

]1/2
6 K

(
E(0,yh(0) − y(0))1/2 + h2(‖y‖C([0,T ];H4(0,1))

+ ‖yt‖L2(0,T ;H4(0,1)) + ‖ytt‖L2(0,T ;H4(0,1))
))

.
(2.8)

In addition, if yh0 and zh0 are Hermite interpolations of y0 and z0, then there exists a positive constant K such that:[
E(t,yh − y)

]1/2
6 Kh2

(
‖y‖C([0,T ];H4(0,1)) + ‖yt‖L2(0,T ;H4(0,1)) + ‖ytt‖L2(0,T ;H4(0,1))

)
. (2.9)

Remark 2.5. The order of convergence for the discretized scheme in space is 2.

Proof of Theorem 2.4. The error of the semi-discrete solution yh is defined as eh = yh − ỹ. Utilizing equa-
tion (2.3), we get: ∫ 1

0
m(eh)ttφdx+

∫ 1

0
EI(eh)xxφxx dx+

∫ 1

0
γ(eh)t(x)φdx

=

∫ 1

0
m(y− ỹ)ttφdx+

∫ 1

0
EI(y− ỹ)xxφxx dx+

∫ 1

0
γ(y− ỹ)tφdx,

(2.10)

for all φ ∈ Vh and for all t > 0. Using φ = (eh)t ∈ Vh, (2.10) gives:∫ 1

0
m(eh)tt(eh)t dx+

∫ 1

0
EI(eh)xx(eh)xxt dx+

∫ 1

0
γ(eh)t(x)(eh)t dx

=

∫ 1

0
m(y− ỹ)tt(eh)t dx+

∫ 1

0
EI(y− ỹ)xx(eh)xxt dx+

∫ 1

0
γ(y− ỹ)t(eh)t dx, ∀t ∈ [0, T ].
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As a result, for almost every t ∈ [0, T ],

1
2
d

dt

[ ∫ 1

0
m(eh)

2
t dx+

∫ 1

0
EI(eh)

2
xx dx

]
=

∫ 1

0
m(y− ỹ)tt(eh)t dx+

∫ 1

0
EI(y− ỹ)xx(eh)txx dx

+

∫ 1

0
γ(y− ỹ)t(x)(eh)t dx,−

∫ 1

0
γ(eh)t(x)(eh)tdx.

This implies that:

1
2
d

dt
E(t, eh) 6

∫ 1

0
m(y− ỹ)tt(eh)t dx+

∫ 1

0
EI(y− ỹ)xx(eh)txx dx+

∫ 1

0
γ(y− ỹ)t(eh)t dx, (2.11)

for almost every t ∈ [0, T ]. Integrating the expression (2.11) in time, we obtain

E(t, eh) 6 E(0, eh(0)) + 2
∫t

0

∫ 1

0
m(y− ỹ)tt(eh)t dxdν

+ 2
∫t

0

∫ 1

0
EI(y− ỹ)xx(eh)txx dxdν+

∫t
0

∫ 1

0
γ(y− ỹ)t(eh)t dxdν.

(2.12)

In expression (2.12), we integrate by parts
∫t

0
EI(y− ỹ)xx(eh)txx dν. It follows for almost every t ∈ [0, T ]:

E(t, eh) 6 E(0, eh(0)) + 2
∫t

0

∫ 1

0
γ(yt(x,ν) − ỹt(x,ν))(eh)t(x,ν)dxdν

+ 2
∫t

0

∫ 1

0
m(ytt(x,ν) − ỹtt(x,ν))(eh)t(x,ν)dxdν

− 2
∫t

0

∫ 1

0
EI(ytxx(x,ν) − ỹtxx(x,ν))(eh)xx(x,ν)dxdν

+ 2
∫ 1

0
EI(yxx(x, t) − ỹxx(x, t))(eh)xx(x, t)dx

+ 2
∫ 1

0
EI(yxx(x, 0) − ỹxx(x, 0))(eh)xx(x, 0)dx.

(2.13)

Applying Cauchy-Schwarz to (2.13) yields:

E(t, eh) 6 E(0, eh(0)) + m̃
[
‖ytt − ỹtt‖2

L2(0,T ;L2(0,1)) +

∫t
0
‖(eh)t(.,ν)‖2

L2(0,1) dν
]

+ γ̃
[
‖yt − ỹt‖2

L2(0,T ;L2(0,1)) +

∫t
0
‖(eh)t(.,ν)‖2

L2(0,1) dν
]

+ ẼI
[
‖yt − ỹt‖2

L2(0,T ;H2(0,1)) +

∫t
0
‖(eh)xx(.,ν)‖2

L2(0,1) dν
]

+ 8ẼI
[
‖yxx(., t) − ỹxx(., t)‖2

L2(0,1) +
1
64
‖(eh)xx(., t)‖2

L2(0,1)

]
+ 8ẼI

[
‖yxx(., 0) − ỹxx(., 0)‖2

L2(0,1) +
1
64
‖(eh)xx(., 0)‖2

L2(0,1)

]
,

where γ̃ := maxx∈[0,1] γ(x), m̃ := maxx∈[0,1]m(x), and ẼI := maxx∈[0,1] EI(x). Using the estimations
(2.6)-(2.7), it follows:

E(t, eh) 6M1E(0, eh(0)) +M2

∫t
0

E(ν, eh)dν+Mh4
(
‖y‖2

C([0,T ];H4(0,1))
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+ ‖yt‖2
L2(0,T ;H4(0,1)) + ‖ytt‖

2
L2(0,T ;H2(0,1))

)
,

where M1,M2, and M denote constants. Gronwall’s inequality applied to the last inequality gives

E(t, eh) 6 K

(
E(0, eh(0)) + h4

(
‖y‖2

C([0,T ];H4(0,1)) + ‖yt‖
2
L2(0,T ;H4(0,1)) + ‖ytt‖

2
L2(0,T ;H2(0,1))

))
.

Using the triangular inequality, we obtain (2.8). Finally, from (2.8) with eh(0) = 0, (2.9) is verified.

2.4. Fully-discrete scheme: time discretization

We now turn to the study the fully discretization in time using Crank-Nicolson scheme, based on the
semi-discretization (2.3) we just did. Lastly, the a-priori error estimated is obtained.

2.4.1. Crank-Nicolson scheme
For a fixed real T > 0, we subdivide the interval [0, T ] into S intervals of the same length ∆t := T/S. We

then set at any point tn = n∆t the nodes of the discretization for all 0 6 n 6 S. For the time discretization
of (2.3), the Crank-Nicolson scheme is used

yn+1 − yn

∆t
=
zn+1 + zn

2
. (2.14)

The equation (2.3) can be written as∫ 1

0
m
zn+1 − zn

∆t
φhdx+

∫ 1

0
γ
zn+1 + zn

2
φhdx+

∫ 1

0
EI
yn+1
xx + ynxx

2
(φh)xxdx = 0, (2.15)

for all φh ∈ Vh. The Crank-Nicolson scheme for the equation (2.4) becomes the vector equation

MZn+1 −MZn

∆t
+
BZn+1 +BZn

2
+
KYn+1 +KYn

2
= 0, (2.16)

where Yn = Y(tn, x) and Zn = Z(tn, x) are the vector representations of yn and zn in the considered
basis Vh, respectively. Note that Z = Yt = [Z1 Z2 . . . ZN]T is the vector representation in the basis {φj}

N
j=1.

Equation (2.16) is written in the following form:(M
∆t

+
B

2

)
Zn+1 +

K

2
Yn+1 = −

K

2
Yn +

(M
∆t

−
B

2

)
Zn. (2.17)

The equations (2.14) and (2.17) are written in a compact vector form:

SWn+1 = FWn,

where S and F are defined by:

S =

 I

∆t
, −

I

2
,

K

2
,

M

∆t
+
B

2
,

 , F =

 I

∆t
,

I

2
,

−
K

2
,
M

∆t
−
B

2
,

 ,

and the vector Wn is defined by Wn = [Yn Zn].

Theorem 2.6. The fully discrete scheme (2.15) has a unique solution.
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Notation: For any sequence {xn} ⊂ Rn, set

δtxn =
xn+1 − xn

∆t
, xn+1/2 =

xn+1 + xn
2

.

Define a bilinear form c(.,.) over L2(0, 1)× L2(0, 1) by setting

c(u, v) =
∫ 1

0
m(x)u(x)v(x)dx ∀u, v ∈ L2(0, 1).

We reformulate the fully discrete problem in order to justify the existence. The problem is referred to as
Problem Eh.

Problem 2.7 (Problem Eh). Find a sequence {yn} ⊂ Vh such that for n ∈ {0, 1, . . . ,S− 1},

δtyn = zn+1/2, (2.18)

c(δtzn,ψ) + a2(zn+1/2,ψ) + a1(yn+1/2,ψ) = 0, (2.19)

for all ψ ∈ Vh, with yn(0) = yn0 = dn and (yn)t(0) = yn1 = en.

Proposition 2.8. Problem Eh has a unique solution for any pair of vectors dn and en in Vh.

Proof. For any ψ ∈ Vh,

∆t

2
a1(yn+1 + yn,ψ) =

∆t2

2
a1(∆t

−1[yn+1 − yn],ψ) +
∆t

2
a1(yn,ψ) +

∆t

2
a1(yn,ψ)

=
∆t2

4
a1(zn+1,ψ) +

∆t2

4
a1(zn,ψ) +∆ta1(yn,ψ).

Substitution into (2.19), we obtain

c(zn+1,ψ) +
∆t

2
a2(zn+1) +

∆t2

4
a1(zn+1,ψ)

= c(zn,ψ) −
∆t

2
a2(zn,ψ) −

∆t2

4
a1(zn,ψ) −∆ta1(yn,ψ)

(2.20)

for any ψ ∈ Vh. The bilinear forms a1 and c are positive definite and as a consequence c+
∆t

2
a2 +

∆t2

4
a1

is positive definite. Therefore, zn+1 is uniquely determined by (2.20) and yn+1 = yn + ∆tzn+1/2 of
(2.18).

2.4.2. A-priori error estimates
In this subsection, a-priori error estimates for the fully discretized scheme are obtained. Suppose that

y ∈ H4(0, T ; V). ȳ ∈ Vh denotes the projection of the weak solution y on Vh such that

a1(ȳ(t),φh) = a1(y(t),φh),

∀ φh ∈ Vh, ∀t ∈ [0, T ]. Since the projection ȳ is bounded in V, then we have ȳ ∈ H4(0, T ; V). In addition,
we denote by ye = y− ȳ the projection error. Suppose also that

y ∈ H2(0, T ;H4
E(0, 1)), yt ∈ L2(0, T ;H4

E(0, 1)), ytt ∈ H2(0, T ; V).

Following [14], we have:

‖y− ȳ‖H2(0,1) 6 Ch
2‖y‖H4(0,1),

‖yt − ȳt‖H2(0,1) 6 Ch
2‖yt‖H4(0,1),

‖ytt − ȳtt‖H2(0,1) 6 Ch
2‖ytt‖H4(0,1).

(2.21)
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Let w(tn) = [y(tn) yt(tn)]
T denote the weak solution of (2.2) at time t = tn and wn = [yn zn]T , the nth

iteration of the fully discrete scheme (2.16)-(2.17), approximating w(tn). Thus, the approximation error is
defined by

ϕn = yn − ȳ(tn), ξn = zn − ȳt(tn), and wn
e = [ϕn ξn]T ,

for every n = 0, 1, . . . ,S.
The following theorem gives the second order error estimate of the fully discrete scheme.

Theorem 2.9. Assume y ∈ H2([0, T ];H4
E(0, 1))∩H4([0, T ]; V). For n ∈ {1, . . . ,S}, we have the following result:

‖wn −w(tn)‖ 6 Ĉ
[
‖w0

e‖+ h2‖y‖H2([0,T ];H4(0,1)) + (∆t)2
(
‖ytt‖L2([0,T ];H4(0,1)) + ‖ytt‖H2([0,T ];H2(0,1))

)]
,

where Ĉ is a positive constant.

Proof. Let’s arbitrarily take n = 0, 1, . . . ,S with S a strictly positive integer. Using Taylor’s Theorem with
integral remainder and by direct calculation, we obtain the two following expressions, for all x ∈ [0, 1].
On the one hand,

ȳ(x, tn+1) − ȳ(x, tn)
∆t

= ȳt(x, tn+1/2) +
1
∆t

∫tn+1

tn+1/2

(tn+1 − t)
2

2
ȳttt(x, t)dt+

1
∆t

∫tn+1/2

tn

(tn − t)2

2
ȳttt(x, t)dt.

On the other hand, we have

ȳt(x, tn+1) + ȳt(x, tn)
2

= ȳt(x, tn+1/2) +
1
2

∫tn+1

tn+1/2

(tn+1 − t)ȳttt(x, t)dt−
1
2

∫tn+1/2

tn

(tn − t)ȳttt(x, t)dt.

From these two previous expressions, we obtain:

ȳ(x, tn+1) − ȳ(x, tn)
∆t

=
ȳt(x, tn+1) + ȳt(x, tn)

2
+∆tUn

1 (x), (2.22)

where

Un
1 (x) =

1
2

∫tn+1

tn+1/2

(tn+1 − t)
2 ȳttt(x, t)

∆t2
dt+

1
2

∫tn+1/2

tn

(tn − t)2 ȳttt(x, t)
∆t2

dt

−
1
2

∫tn+1

tn+1/2

(tn+1 − t)
ȳttt(x, t)
∆t

dt+
1
2

∫tn+1/2

tn

(tn − t)
ȳttt(x, t)
∆t

dt.

Using (2.22) yields

ϕn+1 −ϕn

∆t
=
ξn+1 + ξn

2
−∆tUn

1 (x). (2.23)

Furthermore, in order to rewrite the weak formulation (2.11), we obtain by the Taylor’s theorem with
integral remainder, the following expressions:

yt(x, tn+1) − yt(x, tn)
∆t

= ytt(x, tn+1/2) +
1
2

∫tn+1

tn+1/2

(tn+1 − t)
2

∆t
ytttt(x, t)dt

+
1
2

∫tn+1/2

tn

(tn − t)2

∆t
ytttt(x, t)dt,

and

yxx(x, tn+1) + yxx(x, tn)
2

= yxx(x, tn+1/2) +
1
2

∫tn+1

tn+1/2

(tn+1 − t)yttxx(x, t)dt
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−
1
2

∫tn+1/2

tn

(tn − t)yttxx(x, t)dt.

Replacing t by tn+1/2 and applying the previous expressions to the weak formulation (2.11), we obtain:∫ 1

0
m

(
yt(x, tn+1) − yt(x, tn)

∆t

)
φdx+

∫ 1

0
EI

(
yxx(x, tn+1) + yxx(x, tn)

2

)
φxxdx

+

∫ 1

0
γ

(
yt(x, tn+1) + yt(x, tn)

2

)
φdx = ∆tUn

2 (φ),
(2.24)

where

Un
2 (φ) =

∫ 1

0
m

(
1
2

∫tn+1

tn+1/2

ytttt(x, t)
∆t2

(tn+1 − t)
2dt+

1
2

∫tn+1/2

tn

ytttt(x, t)
∆t2

(tn − t)2dt

)
φdx

+

∫ 1

0
EI

(
1
2

∫tn+1

tn+1/2

yttxx(x, t)
∆t

(tn+1 − t)dt−
1
2

∫tn+1/2

tn

yttxx(x, t)
∆t

(tn − t)dt

)
φxxdx

+

∫ 1

0
γ

(
1
2

∫tn+1

tn+1/2

yttt(x, t)
∆t

(tn+1 − t)dt−
1
2

∫tn+1/2

tn

yttt(x, t)
∆t

(tn − t)dt

)
φdx

and is defined as follows Un
2 : V −→ R. Now, from (2.24) and (2.15), we have for all φh ∈ Vh,∫ 1

0
m
ξn+1 − ξn

∆t
φhdx+

∫ 1

0
EI
ϕn+1

xx +ϕn
xx

2
(φh)xxdx+

∫ 1

0
γ
ξn+1 + ξn

2
φhdx

= −∆tUn
2 (φh) +U

n
3 (φh),

(2.25)

where

Un
3 (φh) =

∫ 1

0
m
yet(x, tn+1) − y

e
t(x, tn)

∆t
φhdx+

∫ 1

0
γ
yet(x, tn+1) + y

e
t(x, tn)

2
φhdx. (2.26)

Using (2.23) and taking φh = ∆t
ξn+1 + ξn

2
∈ Vh in (2.25), we obtain:

‖wn+1
e ‖2−‖wn

e ‖2 = −∆t2
∫ 1

0
EI
ϕn+1

xx +ϕn
xx

2
(Un

1 )xxdx

−

∫ 1

0
γ
ξn+1 + ξn

2
× ∆t

2
dx−

∆t2

2
Un

2 (ξ
n+1 + ξn) +

∆t

2
Un

3 (ξ
n+1 + ξn).

The following estimate is used

‖Un
1 ‖2

H2 6 ∆t
∫tn+1

tn

‖ȳttt(t)‖2
H2dt 6 Ĉ∆t

∫tn+1

tn

‖yttt(t)‖2
H2dt.

Rewriting the second term of Un
2 (ξ

n) (using the fact that ξn(0) = ξnx (0) = 0) and integrating twice by
parts over [0, 1], we get:∫ 1

0

(
1
2

∫tn+1

tn+1/2

yttxx(x, t)
∆t

(tn+1 − t)dt−
1
2

∫tn+1/2

tn

yttxx(x, t)
∆t

(tn − t)dt

)
ξnxxdx

=

∫tn+1

tn+1/2

1
2∆t

(tn+1 − t)

(
yttxx(1, t)ξnx (1) − yttxxx(1, t)ξn(1) +

∫ 1

0
yttxxxx(1, t)ξndx

)
dt
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−

∫tn+1/2

tn

1
2∆t

(tn − t)

(
yttxx(1, t)ξnx (1) − yttxxx(1, t)ξn(1) +

∫ 1

0
yttxxxx(1, t)ξndx

)
dt.

Then

|Un
2 (ξ

n)| 6 Ĉ
(
∆t

∫tn+1

tn

‖ytttt(t)‖2
H2 + ‖yttt(t)‖2

H2 + ‖ytt(t)‖2
H4dt+ ‖ξn‖2

L2 + |ξnx (1)|
2 + |ξn(1)|2

)
.

Moreover, from (2.26) we have:

|Un
3 (ξ

n+1 + ξn)| 6 Ĉ
( 1
∆t

∫tn+1

tn

‖yett(t)‖2
L2 + ‖yet(t)‖2

C([tn,tn+1],H2) + ‖ξ
n+1 + ξn‖2

L2 + |ξn+1
x (1) + ξnx (1)|

2
)

.

We deduce that

‖wn+1
e ‖2−‖wn

e ‖2 6 Ĉ
(
∆t
(
‖wn+1

e ‖2+‖wn
e ‖2+‖yet‖2

C([tn,tn+1],H2)

)
+

∫tn+1

tn

‖yett(t)‖2
L2dt+∆t

4
∫tn+1

tn

‖ytt(t)‖2
H4 + ‖yttt(t)‖2

H2 + ‖ytttt(t)‖2
H2dt

)
.

Letm = 1, . . . ,S. Summing on n = 0, . . . ,m and supposing that ∆t 6
1

2Ĉ
, finally, using the discrete-in-time

Gronwall inequality and the estimates (2.21), we obtain:

‖wm+1
e ‖2 6 Ĉ

[
‖w0

e‖2 + h4
(
‖yt‖2

C([0,T ];H4) + ‖ytt‖
2
L2([0,T ];H4)

)
+ (∆t)4

(
‖ytt(t)‖2

L2([0,T ];H4) + ‖yttt(t)‖
2
L2([0,T ];H2) + ‖ytttt(t)‖

2
L2([0,T ];H2)

)]
.

Using the triangle inequality the result now follows.

3. Numerical results

3.1. Uniform case with constant damping γ

In this section, we present some numerical simulation results by the approximation method presented
in this paper. The numerical results provided in this section verify the prediction Theorem 2.2. Let
m = EI = 1. Moreover, we take the time step ∆t = 0.01 and the spatial discretization h = 0.01. The initial
conditions are taken as follows:

y0(x) = 0.4x3 − 0.6x2 and z0 ≡ 0.

3.1.1. Representation of the deflection and energy
The simulations are performed for three different cases: a) γ = 0.1; b) γ = 1; and c) γ = 10. Figures 1,

2, and 3 represent the deflection of beam y(x, t) for cases a) b), and c), respectively. Figure 4 represents the
decay of energy function on the time interval [0, 50] for cases a), b), and c), respectively. We can deduce
that the quick decay of energy is related to large values of γ.

3.1.2. Representation of tip position y(1, t) and tip angle yx(1, t)
In the Figures 5 and 6, tip position y(1, t) and tip angle of the beam yx(1, t) are compared on time

interval [0, 50]. In Figures 5 and 6, we notice that, when the value of γ gets great the vibrations of the
beams tip are suppressed, also we observe a quickly convergence to the steady-state.
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Figure 1: Deflection y(x, t). Figure 2: Deflection y(x, t).

Figure 3: Deflection y(x, t). Figure 4: Influence of the damping γ on the energy.

Figure 5: Tip position comparison. Figure 6: Tip angle comparison.

3.1.3. Study of the spectrum
As mentioned above, we use the finite element method to numerically solve the spectrum. We have

to solve the following equation (2.4) in RN with unknown Y(t). Let’s put Z = Yt and U = [Y Yt]
T , the

equation (2.4) is written as Ut(t) = LU(t), where

L =

(
0 I

−M−1K −M−1B

)
is the spectrum matrix. Now, by implementing the spectrum matrix L, we represent the spectrum as-
sociated with the system (1.1)-(1.3) for N = 75 and for different values of γ. On the Figure 7, we have
represented a distribution of 4N eigenvalues for different values of γ.
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Figure 7: Influence of the variation of the damping γ on
the spectrum. Figure 8: Representation of spectrum, when γ = 0.

We notice a spectrum family whose real part is negative. This makes the system exponentially stable
as long as γ > 0. We certainly see a scattered spectrum but contained in the left complex plane. This is
due to the fact that the system is not controlled. Also, we observe a shift of the spectrum to the left for
large values of damping. To observe on the same graph this representation, the values must be very close.
We observe the behaviour of the system when γ = 0 (Figure 8). We observe a spectrum scattered on both
sides of the imaginary axis. This leads to believe that the system is not uniformly stable when γ = 0. We
also illustrate the asymptote for uniform case:

lim
n→∞Reλn =

−1
2h

∫ 1

0
γ(x)dx.

In Figures 9 and 10, we plot the spectrum with respect to the above asymptote. We plot the spectrum for
γ = 1, we observe the asymptote at the spectral abscissa −0.5. We have the representation of the spectrum
for γ = 5 with respect to the asymptote at the spectral abscissa −2.5.

Figure 9: Asymptote of the spectrum for γ = 1. Figure 10: Asymptote of the spectrum for γ = 5.

3.2. Uniform case with variable damping γ
We present some numerical simulation results for variable γ.

3.2.1. Representation of the deflection and energy
The simulations are performed for three different cases: a) γ(x) = (1 + x)2; b) γ(x) = (1 + x)3; and

c) γ(x) = (1 + x)4. Figures 11, 12, and 13 represent the deflection of beam y(x, t) for cases a), b), and c),
respectively. Figure 14 represents the decay of energy function E(t) on the time interval [0, 50] for cases
a), b), and c), respectively. We can deduce that the quick decay of energy is related to large values of γ.
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Figure 11: Deflection y(x, t). Figure 12: Deflection y(x, t).

Figure 13: Deflection y(x, t). Figure 14: Influence of the damping γ on the energy.

3.2.2. Representation of Tip position y(1, t) and Tip angle yx(1, t)
In the Figures 15 and 16, tip position y(1, t) and tip angle of the beam yx(1, t) are compared on time

interval [0, 50].

Figure 15: Tip position comparison. Figure 16: Tip angle comparison.
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It is found that as the value of γ increases, the oscillations of the beam tips are attenuated, leading to
a rapid convergence to the steady state.

3.2.3. Study of the spectrum

Now, by implementing the spectrum matrix L, we represent the spectrum associated with the sys-
tem for different values of γ. On the Figures 17, 18, and 19, we have represented a distribution of 4N
eigenvalues for γ(x) = (1 + x)2, γ(x) = (1 + x)3, and γ(x) = (1 + x)4, respectively. We observe that when
m = EI = 1, the location of spectrum moves rapidly on the left-hand side of the complex plane.

Figure 17: Representation of spectrum for γ(x) = (1 + x)2. Figure 18: Representation of spectrum, when γ(x) = (1 +
x)3.

Figure 19: Representation of spectrum, when γ(x) = (1 +
x)4.

Figure 20: Asymptote of the spectrum for γ(x) = (1 + x)2.

We notice a spectrum family whose real part is negative. This makes the system exponentially stable
as long as γ > 0. We also illustrate the asymptote for uniform case, where we consider variable γ:

lim
n→∞Reλn =

−1
2h

∫ 1

0
γ(x)dx.

Figures 20, 21, and 22 show the graphical representation of the asymptotes for different values of γ
mentioned above. We can see the eigenvalue pairs λn of the system approach the imaginary axis as
n −→∞.
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Figure 21: Asymptote of the spectrum for γ = (1 + x)3. Figure 22: Asymptote of the spectrum for γ = (1 + x)4.

3.3. Nonuniform case with constant damping γ

We choose m(x) = (1 + x)4, EI(x) = (1 + x)2. The simulations are performed for three different cases:
a) γ(x) = 5; b) γ(x) = 10; and c) γ(x) = 15.

3.3.1. Representation of the deflection and energy
Figures 23, 24, and 25 represent the deflection of beam y(x, t) for all three cases a), b), and c), respec-

tively. The decay of energy function on the time interval [0, 50] for cases a), b), and c) is shown in Figure
26.

Figure 23: Displacement of the whole beam y(x, t). Figure 24: Displacement of the whole beam y(x, t).

Figure 25: Displacement of the whole beam y(x, t). Figure 26: Influence of the damping γ on the energy.
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3.3.2. Representation of tip position and tip angle
The comparison of the tip position y(1; t) and the tip angle yx(1; t) for these three cases for the variable

damping is illustrated in the Figures 27 and 28, for the time interval [0, 50].

Figure 27: Displacement of the free end. Figure 28: Tip angle comparison.

3.3.3. Study of the spectrum
On the Figures 29 and 30, we have represented a distribution of 4N eigenvalues for γ = 5 and γ = 10.

Figure 29: Representation of spectrum for γ = 5. Figure 30: Representation of spectrum for γ = 10.

We notice a spectrum family whose real part is negative. This makes the system exponentially stable
as long as γ > 0. We also observe a shift of the spectrum to the left.

Now, we also illustrate the asymptote for nonuniform case:

lim
n→∞Reλn =

−1
2h

∫ 1

0

(
γ(x)

m(x)

)(
m(x)

EI(x)

)1/4

dx > 0.

First, we plot the spectrum for γ = 5 (Figure 31). We observe values to the right of the asymptote.
Figure 32 shows the representation of the spectrum for γ = 10. We observe values to the right of the

asymptote.

3.4. Nonuniform case with variable damping γ
Let m(x) = (1 + x)4, EI(x) = (1 + x)2. The simulations are performed for three different cases: a)

γ(x) = (1 + x)2; b) γ(x) = (1 + x)3; and c) γ(x) = (1 + x)4.
The numerical results provided in this section verify the prediction of the convergence of the solution

to the steady state y ≡ 0 and the non-increasing of energy E(t).
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Figure 31: Asymptote of the spectrum for γ = 5. Figure 32: Asymptote of the spectrum for γ = 10.

3.4.1. Representation of the deflection and energy
Figures 33, 34, and 35 represent the deflection of beam y(x, t) for all three cases a), b), and c), respec-

tively. The decay of energy function on the time interval [0, 50] for cases a), b), and c) is shown in Figure
36.

Figure 33: Deflection y(x, t). Figure 34: Deflection y(x, t).

Figure 35: Deflection y(x, t). Figure 36: Influence of the damping γ on the energy.

3.4.2. Representation of tip position and tip angle
The comparison of the tip position y(1; t) and the tip angle yx(1; t) for these three cases for the variable

damping are illustrated in the Figures 37 and 38, for the time interval [0, 50]. It can be noticed that in the
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variable case of damping resulted in a slower decay of the beam and suppressed the oscillations of the tip
less quickly than in the constant case of damping.

Figure 37: Tip position comparison. Figure 38: Tip angle comparison.

3.4.3. Study of the spectrum
On the Figures 39 and 40, we have represented a distribution of 4N eigenvalues for γ(x) = (1 + x)2

and γ(x) = (1 + x)3. We notice a spectrum family whose real part is negative. This makes the system

Figure 39: Representation of spectrum for γ(x) = (1 + x)2. Figure 40: Representation of spectrum for γ(x) = (1 + x)3.

exponentially stable as long as γ > 0. We also observe a shift of the spectrum to the left. Figure 41 shows
us a spectrum which is certainly contained in the negative real part but whose appearance is totally
different from the other two.

Figure 41: Representation of spectrum for γ(x) = (1 + x)4. Figure 42: Asymptote of the spectrum for γ(x) = (1 + x)2.
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Now, we also illustrate the asymptote for nonuniform case:

lim
n→∞Reλn =

−1
2h

∫ 1

0

(
γ(x)

m(x)

)(
m(x)

EI(x)

)1/4

dx > 0. (3.1)

First, we plot the spectrum for γ(x) = (1 + x)2 (see Figure 42) and γ(x) = (1 + x)3 (see Figure 43). Values
are seen in the area to the right of the asymptote.

Figure 43: Asymptote of the spectrum for γ(x) = (1 + x)3. Figure 44: Asymptote of the spectrum for γ(x) = (1 + x)4.

Finally, we represent the asymptote for γ(x) = (1 + x)4. We observe no point to the left of it. It is
important to note in this case that the value of the abscissa of the asymptote is the same as that found for
γ = 1. This is justified by the choice of the parameters EI(x),m(x), and γ(x). We can see that with these
values a simplification of the expressions occurs in (3.1). This leads to the case where γ = 1, hence the
observation of scattered eigenvalues as in Figure 7.

4. Conclusion

In this article, a damped Euler-Bernoulli beams that have nonuniform thickness or density is devel-
oped. From all of the above observations, we assert that varying the damping control γ has a huge
influence. It improves the energy decay rate of the system. Because we see that the more increase the
value of γ, the more the spectrum moves to the left. In [17], the author theoretically proved that the
positive value of damping was sufficient to establish the exponential stability of the system. This is con-
sistent with our numerical results. Moreover, we illustrated the asymptote and found that the optimal
energy decay rate is in general determined by the low frequency eigenvalues, those on the right side of
the asymptote. Thus, the numerical method implemented, through its finesse, allowed us to appreciate
the impact of the rotation control on the energy decay rate of the system studied. This is not practically
visible at the theoretical level.
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