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Abstract

Taxation policy for fishing received global consent to protect fisheries from drastic harvesting. Still, it should be applied
sustainably for a greater ecological and economic benefit because over-taxation may impair fishers’ earnings and reduce the
overall societal revenue. The fish disease may alter the system dynamics and reduce the revenue generation from the fishery.
This paper proposes a nonlinear bioeconomic harvesting model of a single-species fishery with infection, variable market price,
and nonlinear demand to explore taxation’s ecological and economic effects. We provide the stability results of the system’s
different ecological and economic equilibrium points. The analytical conditions for the existence of transcritical bifurcation are
also established. The computational results show that the system exhibits three dynamical regimes depending on the fishing tax.
Taxation might control intensive harvesting but augment disease spreading and price hiking. Higher regulatory tax may even
cause a regime shift, where the system enters into a non-harvesting regime from the harvesting one, causing an ecological and
economic imbalance. Using Pontryagin’s maximum principle, we decipher that some optimal fishing tax exists for the maximum
societal benefit in a disease-induced fishery.
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1. Introduction

World fisheries have increased tremendously in the last fifty years due to the high demand for fishery
products, the use of sophisticated fishing gear & vessel technology, and growing trade [72]. Global fish
production (inland plus marine) has increased from 89.6 million tonnes in 2016 [27] to the highest ever,
96.4 million tonnes in 2018 [28]. Overexploitation has led many fisheries under stress, or its extinction
[41, 75]. Different policies have been implemented regionally, nationally, and globally to protect world
fisheries and promote sustainable development. To this effect, FAO (Food and Agriculture Organiza-
tion) introduced the Code of Conduct for Responsible Fisheries (CCRF) in 1995 [29]. CCRF was further
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intensified in 2015 by implementing Sustainable Development Goal (SDG) 14 to conserve, protect, and
sustainably use the oceans, seas, and marine resources [31, 69].

Several governing agencies apply many actions to protect overexploitation and preserve marine re-
sources and habitats for sustainable use. For example, creating a marine protected area (MPA) is a
well-accepted conservation policy for the fish, fisheries, and marine environment [50]. However, the suc-
cess of MPA has been questioned. MPA is more likely to improve the biological goals (like increased fish
abundance and improved fish habitat) but, in many cases, fails to revamp social benefit [21]. Fishing has a
direct effect on the harvested biomass. Fixing a harvesting quota for a particular fish species may protect
the species from being overharvested [18, 30]. A fishing license or vessel buy-back policy is another means
to reduce overharvesting [20]. Furthermore, a fishing fee or tax is usually considered one of the crucial
measures for controlling overharvesting. These regulatory measures help protect fish and fisheries and
achieve the SDG 14 targets at large [51]. Policymakers may use the tax revenue earned through such fiscal
policy for the socio-economic upliftment of the fishers and the marine ecosystem. Iceland is one of such
countries that successfully implemented fishing fees for pelagic and demersal fishes [34].

Infection in fish is ubiquitous and known for a very long period. Fish production and revenue gen-
eration may be severely affected due to disease [65, 73]. However, the reason and distribution of fish
infection must be better understood, particularly for marine fish [74]. Water pollution is considered one
of the significant causes of fish infection in the coastal areas [4, 46, 56]. Some other reasons behind the
increasing infection rate are water temperature variation, changes in coastal dynamics, and lack of proper
governance [37]. Recently, new and transboundary diseases have augmented epidemiological studies of
aquatic fish in the presence of infection [59]. Infection may cause a low level of fish productivity [22].
The economic loss due to the production loss of fish for the disease may be huge despite complimentary
price hikes due to short supply. Thailand reported a financial loss of US$ 7.38 billion during 2010-2017
for decreased shrimp production due to episodes of disease [70]. Peterman and Posadas [62] reported a
total of 16.9M$ loss in 2016 due to the catfish disease in the east Mississippi catfish industry. Therefore, a
global challenge is protecting fish and fishery from diseases and reducing economic loss by maintaining
sustainable production.

Modern bioeconomic fishery received global attention as it can give insights into how to deal with the
multi-difficulties of fisheries [12, 58] and prescribe suitable protective measures that could be ecologically
and economically viable [67]. However, it is shown that a conflict exists between conservation policy
and socio-economic objectives [19]. For example, a higher fishing tax may relieve the fish stock from
over-harvesting but may jeopardize the livelihood of local fishing people. It is particularly true in under-
developed countries where fishermen have limited alternatives for their livelihood. Therefore, imposing
a fishing tax scientifically and sensibly is essential.

The price of many commodities, like fish, is determined by instantaneous demand and supply in an
open market. Demand is an essential tool that enhances market price fluctuation. Price tends to increase
if there is a shortfall in supply and vice-versa. The intricacy of demand, tax, and infection plays a role
in the fishery system and revenue generation and needs better understood. Using an ecological model
for the harvested species with the market-linked price might be more effective in deciding the control
measure. Here, we propose and analyze a dynamic model of fish stock in the presence of infection, where
harvesting effort depends on the profitability of the fishery. The model also considers a fishing tax on the
landed fish, and the market price of fish depends on the difference between instantaneous demand and
supply. Our analysis revealed that taxation might control intensive fish harvesting but augment disease
spreading and price hiking. Higher regulatory tax may cause a regime shift, where the system enters a
non-harvesting regime from the harvesting one. Using the optimal control theory, we show some trade-
offs between revenue generation and regulatory tax. The overall societal revenue, defined here as the sum
of fishers’ income from selling fish plus the tax revenue earned by the regulatory body, is highest at the
optimal tax level. However, the individual earnings in these heads are different at different tax levels.

The rest of the study is organized as follows. Section 2 describes the bioeconomic model formulation
for a single-species fishery. Section 3 contains the positivity boundedness, the existence of equilibrium
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points of the model, and their local stability properties. The impacts of variation in the regulatory tax
on the equilibrium values are also presented in this section. The existence of some optimal policies is
discussed in Section 4. The study ends with a discussion in Section 5.

2. Model construction

Suppose F(t) be the current stock level of a fish and h(t) be the harvesting rate then the fish growth
equation may be represented by

dF

dt
= jF

(
1 −

F

L

)
− h(t), (2.1)

where j is the intrinsic growth rate of the fish population and L is the environmental carrying capacity.
Many fish harvesting models [16, 17, 66] consider h(t) as a constant and independent of the stock

size. We, however, consider here that the harvesting rate follows the catch per unit of effort (CPUE)
hypothesis, where harvesting at any time is proportional to the fish biomass of that time [5, 49, 54, 61].
Thus, h(t) = q1H(t)F(t), where H(t) is the harvesting effort at time t, measured in terms of the number
of boats, fishing gears, individuals involved in the fishing; and q1 is the catchability coefficient, measured
in terms of the mesh size of the net, gear sophistication, etc. Then the rate equation (2.1) reads

dF

dt
= jF

(
1 −

F

L

)
− q1HF.

Presume that the fish stock is infected by some parasites, giving rise to two fish sub-populations: a
susceptible class, S, and an infected class, I. So, the net fish stock at any time t is F(t) = S(t) + I(t), and
at any time t, S(t) + I(t) 6 L, meaning that the entire fish population never exceeds the environmental
carrying capacity. Then the interactive dynamics of the fish population can be represented as

dS

dt
= j(S+ I)

(
1 −

S+ I

L

)
− fSI− q1HS,

dI

dt
= fSI− µI− q2HI, (2.2)

where the rate parameters f, µ, and q2 represent, respectively, the disease transmission rate, death of
the infected fish, and catchability coefficient of the infected fish. It is assumed here that the mixing
of susceptible and infected fishes is homogeneous, the disease spreads through horizontal transmission
following the density-dependent rule, infected fishes do not recover, harvesting is non-selective, and all
biological processes are instantaneous. Since infection may induce morbidity through hypoxia, reduce
swimming ability, and the conspicuousness of the infected fish [25, 33], the catchability may be higher for
infected fish compared to healthy fish under the same effort, i.e., q2 > q1.

The fishing agency assigns more manpower, boats, etc, to harvesting if there is a profit. However, the
case will be the opposite if profitability reduces. Therefore, harvesting effort, which is usually assumed
to be time-independent [6, 15, 76], should be time-dependent. Here we assume that the harvesting effort
varies with time and is proportional to the profit margin (selling price-cost of fishing) [7]. If c is the cost
of per unit harvesting effort and M is the market price per unit fish biomass at time t, then the system
(2.2) with variable harvesting effort can be represented as

dS

dt
= j(S+ I)

(
1 −

S+ I

L

)
− fSI− q1HS,

dI

dt
= fSI− µI− q2HI,

dH

dt
= φ1

{(
q1S+ q2I

)
M− c

}
H,

(2.3)
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where φ1 is a proportionality constant.
Many authors have considered taxation policy in harvesting models [26, 32, 39, 45, 57, 68] to control

overfishing. However, none of these has considered infection in the fish stock, which may cause a signifi-
cant change in the system dynamics. If the fisherman pays a tax τ(> 0) to the regulating agency for per
unit biomass of the harvested fish, then the model (2.3) takes the form

dS

dt
= j(S+ I)

(
1 −

S+ I

L

)
− fSI− q1HS,

dI

dt
= fSI− µI− q2HI,

dH

dt
= φ1

{(
q1S+ q2I

)
(M− τ) − c

}
H.

The fish price is adjusted daily in the open market, balancing demand and supply. In such a case, price
should be regarded as a time variable [13, 53] instead of a constant as usually considered in many models
[7, 54]. Then the per capita rate of price change should be proportional to the difference between the
market demand (D) and the amount of supplied fish (Q) at that time [5]. Considering a quadratic market
demand

D(M) = A−A1M−A2M
2,

where A,A1,A2 are positive constants with A2 << A1 << A [9], and noting that the supplied fish at any
time t is

Q(t) = q1HS+ q2HI,

the dynamic bioeconomic fishery model in the presence of infection, harvesting, and taxation can be
expressed as

dS

dt
= j(S+ I)

(
1 −

S+ I

L

)
− fSI− q1SH = F1(S, I,H,M),

dI

dt
= fSI− µI− q2IH = F2(S, I,H,M),

dH

dt
= φ1

((
q1S+ q2I

)
(M− τ) − c

)
H = F3(S, I,H,M),

dM

dt
= φ2M

(
D−Q

)
= F4(S, I,H,M),

(2.4)

where φ2 is a proportionality constant, and Fi(S, I,H,M) (i = 1, 2, 3, 4) are the functional forms of the
rate of change of the respective state variables. Table 1 represents the state variables and parameters con-
sidered to formulate the model (2.4) and their default parameter values to be used subsequently. Many
authors have studied the harvesting model in the presence and absence of infection. For example, Hu and
Cao [38] considered saturated harvesting in a predator-prey model and analyzed its stability and bifurca-
tions. In [42], the authors considered a predator-prey model with constant harvesting and prey refuge to
show the existence and uniqueness of the limit cycle. Juneja and Agnihotri [43] studied a predator-prey
model with prey infection and predator harvesting. They mainly observed the infection recovery effect
on the system dynamics and optimized the net profit taking tax as the controlling parameter. They, how-
ever, ignored the dynamic market price of the harvested species. The dynamics of a single-species fishery
model, having variable harvesting effort and market price, were explored in [7]. The harvesting tax and
its optimality were not considered here, and the per capita demand was considered constant. Ang and
Safuan [3] analyzed a harvested predator-prey model with variable carrying capacity and in the presence
of environmental toxicants. It is shown that bionomic equilibrium has a strong dependence on resource
density. In addition, using the Pontryagin maximum principle, they prescribed the optimal harvesting
policy. The effects of fear and refuge on the optimal harvesting in a predator-prey model with cross-
diffusion were analyzed by Ma et al. [47]. The harvesting rate was considered a constant, and they did
not consider the economic aspect of harvested species. Variable harvesting and the demand-dependent
market price of the harvested stocks were considered in [5, 49, 53]. These studies did not consider disease
in the harvested fish and ignored the optimal tax policy and the corresponding societal revenue.
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Table 1: State variables and parameters with their descriptions and default values.
State variable Description Unit

S(t) Healthy fish biomass at time t metric tons
I(t) Infected fish biomass at time t metric tons
H(t) Fishing effort at time t SFU∗

M(t) Market price per unit fish biomass at time t M$∗∗/metric ton
Parameter Description Default Value Reference

j Intrinsic growth rate of healthy fish 0.9 /year [7]
L Environmental carrying capacity 5 metric tons [64]
f Disease transmission rate 0.04 /metric ton/year [55]
q1 Catchability coefficient of susceptible fish 0.8 /SFU/year [1]
µ Death rate of infected fish 0.05 /year [7]
q2 Catchability coefficient of infected fish 0.9 /SFU/year [1]
c Cost per unit of fishing effort 9 M$/SFU/year [44]
A Maximum demand 0.9 metric tons/year Assumed
A1 Demand sensitivity parameter 0.01 (metric tons)2/M$/year Assumed
A2 Demand sensitivity parameter 0.005 (metric tons)3/(M$)2/year Assumed
φ1 Stiffness parameter 0.1 SFU/M$ [7]
φ2 Proportionality constant 0.15 /metric ton [7]
τ Tax per unit biomass of harvested fish M$/metric ton Variable

∗ SFU stands for Standardized Fishing Unit [14, 36] and ∗∗ M$ indicates million USD.

3. Model analysis

3.1. Well-posedness of the system
The well-posedness of an ecological model can be justified by its positivity and boundedness results.

One can ensure that the system (2.4) is positive and bounded by the subsequent lemma.

Lemma 3.1. With the initial condition I = (S0, I0,H0,M0) ∈ R
4,0
+ , the positivity and boundedness of the system

(2.4) is guaranteed in GL, where GL = (S, I,H,M) : 0 < (S+ I) < ι+ ζ1, 0 < M < ι̂+ ζ2, 0 < X(S, I,H,M) <
s4
s3

+ ζ, for any positive ζ1, ζ2, ζ.

Proof. Consider the Banach space of continuous functions B = B([0, t], R
4,0
+ ), which maps the interval [0, t]

into R
4,0
+ having norm

||N|| = sup
0<θ<t

(|N1(θ)|, |N2(θ)|, |N3(θ)|, |N4(θ)|),

where N = (N1,N2,N3,N4). One can assume the initial state of the system (2.4) as

Sθ = N1(θ) > 0, Iθ = N2(θ) > 0, Hθ = N3(θ) > 0, and Mθ = N4(θ) > 0, θ ∈ [0, t], (3.1)

where (N1(0),N2(0),N3(0),N4(0)) ∈ B. Then from the fundamental theory of functional differential equa-
tions [35], the system (2.4) has a unique solution with initial point (3.1).

Next we prove that the solutions of the model (2.4) are positive for all positive t. From Eq. (2.4), one
can notice

S(t) =

S0 +

∫t
0

j
(

1 −
I(z2)

L

)
e
−
∫z2

0

[
j
(

1−S(z1)+I(z1)
L

)
−fI(z1)−q1H(z1)

]
dz1

dz2

P > 0 if S0 > 0,

where

P = e

∫t
0

[
j
(

1−S(z3)+I(z3)
L

)
−fI(z3)−q1H(z3)

]
dz3

,
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I(t) = I0e
∫t

0(fS(z)−µ−q2H(z))dz > 0 if I0 > 0,

H(t) = H0e

∫t
0 φ1

((
q1S(z)+q2I(z)

)
(M(z)−τ)−c

)
dz

> 0 if H0 > 0,

M(t) =M0e
∫t

0 φ2

(
A−A1M(z)−A2M

2(z)−
(
q1S(z)+q2I(z)

)
H(z)

)
dz > 0 if M0 > 0.

Therefore, irrespective of the choice of any positive initial point, the system always exhibits positive
solution for all t > 0. Consequently, the solutions of the system (2.4) is positive in R

4,0
+ , which is the

interior of R4
+, making the system positively invariant.

Presume that (S(t), I(t),H(t),M(t)) is a solution of the system (2.4) with initial state (S0, I0,H0,M0) ∈
R

4,0
+ . Adding the first two equations of system (2.4), one can reach

d(S+ I)

dt
6 j(S+ I)

(
1 −

S+ I

L

)
.

Applying standard comparison theorem, one gets

lim sup
t→∞ (S(t) + I(t)) 6 ι, where ι = max{S0 + I0,L}. (3.2)

Similarly, the last equation of (2.4) gives, dMdt 6 ĵM
(

1 − M
L̂

)
, where ĵ = φ2A, L̂ = A

A1
. Again applying

standard comparison theorem, we have

lim sup
t→∞ (M(t)) 6 ι̂, where ι̂ = max{M0, L̂}.

Next consider the function
X = ln (S+ I) + lnH+ lnM.

Its time derivative along the solution of (2.4) gives

dX

dt
=

1
S+ I

d(S+ I)

dt
+

1
H

dH

dt
+

1
M

dM

dt

= j

(
1 −

S+ I

L

)
−
q1SH+ µI+ q2IH

S+ I
+φ1

((
q1S+ q2I

)
(M− τ) − c

)
+φ2

(
A−A1M−A2M

2 −
(
q1S+ q2I

)
H
)

6 (j+φ2A) −

(
j

L
(S+ I) + q3H+φ1q3ιM

)
(following Eq. (3.2))

6 (j+φ2A) −

(
j

L
ln (S+ I) + q3 lnH+φ1q3ι lnM

)
(since S > lnS, ∀ S > 0)

6 s4 − s3X,

where s3 = min{ jL ,q3,φ1q3ι} and s4 = j+φ2A. Then, following differential inequality theorem [11],

dX

dt
+ s3X 6 s4

provides

0 < X(S, I,H,M) <
s4

s3
+
X(S0, I0,H0,M0)

es3t
.

Making t → ∞, one obtains 0 < X(S, I,H,M) < s4
s3

. Hence, every solution of the system (2.4) starting
at I, belongs to GL, where GL = {(S, I,H,M) : 0 < (S+ I) < ι+ ζ1, 0 < M < ι̂+ ζ2, 0 < X(S, I,H,M) <
s4
s3

+ ζ, for any positive ζ1, ζ2, ζ}, and I = (S0, I0,H0,M0) ∈ R
4,0
+ . Therefore, the region GL is positively

invariant with respect to the system (2.4). Thus, the lemma is proven.
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3.2. Basic reproduction number
The basic reproduction number (BRN), defined by the number of secondary cases arising from a

single infected individual introduced into a group of susceptible individuals [2], is an essential measure
of disease dynamics. The success of a pathogen depends on the value of BRN, R0. If R0 < 1, then the
epidemic cannot grow, and the system eventually becomes disease-free [24].

The system (2.4) contains only one infection state, I. Let F and V, respectively, represent the rate of
appearance of new infection and the rate of transitions [24]. Then

F =
(
fSI
)

1×1 and V = (µI+ q2IH)1×1.

At the infection-free equilibrium point E1 = (S1, 0,H1,M1), the transmission matrix F̂ and the transition
matrix V̂ associated with system (2.4) are given by

F̂ =

[
∂F

∂I

]
E1=(S1,0,H1,M1)

= fS1 and V̂ =

[
∂V

∂I

]
E1=(S1,0,H1,M1)

= µ+ q2H1.

Then

K = F̂V̂−1 =

(
fS1

µ+ q2H1

)
1×1

,

where F̂V̂−1 is called the next generation matrix. The basic reproduction number (R0), which is the
spectral radius of the next generation matrix (K) [23], is given by

R0 =
fS1

µ+ q2H1
,

where H1 = j
q1L

(L− S1) and S1 is the equilibrium value of susceptible fish at the disease-free state.

3.3. Equilibrium points
The equilibrium points of the system (2.4) are the solutions of the simultaneous equations

∗j(S+ I)
(

1 −
S+ I

L

)
− fSI− q1SH = 0,

fSI− µI− q2IH = 0,

φ1

((
q1S+ q2I

)
(M− τ) − c

)
H = 0,

φ2M
(
A−A1M−A2M

2 − q1SH− q2IH
)
= 0.

The system (2.4) has seven equilibrium points:

(i) The trivial equilibrium E0 = (0, 0, 0, 0), which always exists.
(ii) The disease-free equilibrium E1 = (S1, 0,H1,M1), where the equilibrium components are

H1 =
j

q1L
(L− S1), M1 = τ+

c

q1S1
,

and S1 is the positive root of the equation

S4
1 +B1S

3
1 +B2S

2
1 +B3S1 +B4 = 0, (3.3)

where

B1 = −L < 0, B2 =
L

j

{
(A−A1τ−A2τ

2)

}
, B3 = −

Lc

jq1
(A1 +A2τL) < 0,B4 = −

A2c
2L

jq2 < 0.
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Since the number of sign change of the coefficients is exactly one under the restriction A < A1τ+
A2τ

2, by Descartes’ rule of sign, Eq. (3.3) has exactly one positive root. Note that H1 is always
positive as S1 < L, and M1 is also positive. Thus, the disease-free equilibrium point (E1) uniquely
exists if A < A1τ+A2τ

2.
(iii) The harvesting-free equilibrium has the form E2 = (S2, I2, 0,M2), whose equilibrium components

are given by S2 = µ
f , I2 = 1

2jf

(
−(2jµ + jµ − jfL) +

√
(2jµ+ jµ− jfL)2 − 4j2µ(µ− fL)

)
and M2 =

1
2A2

(−A1 +
√
A2

1 + 4A1A2). Since S2 and M2 are always positive, so E2 exists if I2 is positive and it
holds whenever fL > µ.

(iv) The harvesting-and disease-free equilibrium E3 = (S3, 0, 0,M3) always exists, where S3 = L > 0 and

M3 = 1
2A2

(−A1 +
√
A2

1 + 4A1A2) =M2 > 0.
(v) The healthy and infected fish only equilibrium E4 = (S4, I4, 0, 0), whose state variables at the equi-

librium level can be represented as S4 = µ
f and

I4 =
1

2jf

(
−(2jµ+ jµ− jfL) +

√
(2jµ+ jµ− jfL)2 − 4j2µ(µ− fL)

)
= I2.

This equilibrium exists if fL > µ.
(vi) The only healthy fish equilibrium E5 = (S5, 0, 0, 0) always exists with S5 = L.

(vii) The coexisting equilibrium E∗ = (S∗, I∗,H∗,M∗), and the corresponding equilibrium components
can be computed as

S∗ =
1
f

(
µ+ q2H

∗), M∗ = τ+
c

q1
f

(
µ+ q2H∗

)
+ q2I∗

.

Observe that both S∗ and M∗ are positive. The other two equilibrium components I∗ and H∗ are the
positive roots of the equations

j

(
1
f

(
µ+ q2H

∗)+ I∗)(1 −
1
f

(
µ+ q2H

∗)+ I∗
L

)
−
(
µ+ q2H

∗)I∗ − q1

f

(
µ+ q2H

∗)H∗ = 0,

A−A1

[
τ+

c
q1
f

(
µ+ q2H∗

)
+ q2I∗

]
−A2

[
τ+

c
q1
f

(
µ+ q2H∗

)
+ q2I∗

]2

−
q1

f

(
µ+ q2H

∗)H∗ + q2I
∗H∗ = 0.

Our computational results for the considered parameter values show that the equilibrium E∗ is
unique.

3.4. Stability of the equilibria
Under what parametric conditions an equilibrium state will be stable is essential for population per-

sistence and sustainable yield. The stability of an equilibrium point means whether the system will return
to the equilibrium point over time or not if the equilibrium point is perturbed. One way of determining
such stability is the linearization technique of the system around the equilibrium point [48]. The Jacobian
matrix of the system (2.4) at any arbitrary equilibrium point Ê = (Ŝ, Î, Ĥ, M̂) reads

J(Ŝ, Î, Ĥ, M̂) =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 a34
a41 a42 a43 a44

 , (3.4)

where a11 = −fÎ− Ĥq1 − j
(

2(Î+Ŝ)
L − 1

)
, a12 = −Ŝf− j

(
2(Î+Ŝ)
L − 1

)
, a13 = −Ŝq1, a21 = Îf, a22 = Ŝf− µ−

Ĥq2, a23 = −Îq2, a31 = Ĥφ1q1
(
M̂− τ

)
, a32 = Ĥφ1q2

(
M̂− τ

)
, a33 = φ1

((
q1Ŝ+ q2Î

)
(M̂− τ) − c

)
, a34 =

φ1
(
ĤÎq2 + ĤŜq1

)
, a41 = −ĤM̂φ2q1, a42 = −ĤM̂φ2q2, a43 = −M̂φ2

(
Îq2 + Ŝq1

)
, a44 = −φ2(A2M̂

2 +

A1M̂−A+ ĤÎq2 + ĤŜq1) − M̂φ2
(
A1 + 2A2M̂

)
. One can then prove the following stability theorem.
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Theorem 3.2.

(i) The equilibrium points E0 = (0, 0, 0, 0), E4 = (S4, I4, 0, 0), and E5 = (L, 0, 0, 0) are always unstable.
(ii) The disease-free equilibrium E1 = (S1, 0,H1,M1) is locally asymptotically stable if the conditions R0 <

1, C1 > 0, C3 > 0, and C1C2 −C3 > 0 are satisfied, otherwise it is unstable, where C1, C2, and C3 are given
in (3.8).

(iii) If c > (I2q2 + S2q1)(M2 − τ) and 2(S2 + I2) > L, then the harvesting-free equilibrium E2 = (S2, I2, 0,M2)
is locally asymptotically stable, and unstable otherwise.

(iv) Whenever the conditions µ > Lf, c > Lq1 (M3 − τ) hold, the harvesting-and disease-free equilibrium E3 =
(S3, 0, 0,M3) remains locally asymptotically stable, and unstable otherwise.

(v) A set of necessary and sufficient conditions for the stability of the coexisting equilibrium point E∗ = (S∗, I∗,H∗,
M∗) is {C4 > 0,C6 > 0,C7 > 0,C4C5C6 − (C2

6 +C
2
4C7) > 0}, where C4, C5, C6, and C7 are given in (3.11).

Proof.

(i) The variational matrix (3.4) at the trivial equilibrium point E0 = (0, 0, 0, 0) reads

JE0 =


j j 0 0
0 −µ 0 0
0 0 −cφ1 0
0 0 0 Aφ2

 . (3.5)

Since two eigenvalues (j and Aφ2) of the Jacobian matrix (3.5) are positive, the equilibrium point E0
is always unstable. Similarly, a positive eigenvalue of the form Aφ2 for both the equilibrium points
E4 = (S4, I4, 0, 0) and E5 = (L, 0, 0, 0) makes them unstable.

(ii) At the disease-free equilibrium E1 = (S1, 0,H1,M1), the variational matrix (3.4) reads

JE1 =


b11 b12 b13 0
0 b22 0 0
b31 b32 0 b34
b41 b42 b43 b44

 , (3.6)

where b11 = −S1j
L , b12 = −S1f− j

(
2S1
L − 1

)
, b13 = −S1q1, b22 = S1f− µ−H1q2, b31 = H1φ1q1(M1 − τ),

b32=H1φ1q2(M1 − τ), b34 = H1S1φ1q1, b41 = −H1M1φ2q1, b42 = −H1M1φ2q2, b43 = −M1S1φ2q1, b44 =
−M1φ2(A1 + 2A2M1). Its one eigenvalue is S1f− µ−H1q2, which is negative whenever the basic repro-
duction number R0 < 1. The other three eigenvalues are the roots of the equation

λ3 +C1λ
2 +C2λ+C3 = 0, (3.7)

where

C1 = −(b11 + b44), C2 = −b13 b31 + b11 b44 − b34 b43, C3 = −b13 b34 b41 + b13 b31 b44 + b11 b34 b43. (3.8)

Following Routh-Hurwitz criterion [40], the necessary and sufficient conditions for all roots of Eq. (3.7)
to have negative real part are C1 > 0,C3 > 0,C1C2 −C3 > 0. Therefore, the disease-free equilibrium E1 =
(S1, 0,H1,M1) is locally asymptotically stable under the condition R0 < 1, C1 > 0, C3 > 0, and C1C2 −
C3 > 0.

(iii) The Jacobian matrix at the harvesting-free equilibrium E2 = (S2, I2, 0,M2) is

JE2 =



−I2 f− j
(

2(I2+S2)
L − 1

)
−S2 f− j

(
2(I2+S2)

L − 1
)

−S2 q1 0
I2 f 0 −I2 q2 0
0 0 φ1((I2q2 + S2q1) 0

(M2 − τ) − c)
0 0 −M2φ2(I2 q2 −M2φ2(A1

+S2q1) +2A2M2)


. (3.9)
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Its two eigenvalues are −M2φ2 (A1 + 2A2M2) < 0 and φ1 ((I2q2 + S2q1)(M2 − τ) − c). The latter eigen-
value is negative provided c > (I2q2 + S2q1)(M2 − τ), i.e., the cost per unit of fishing effort greater than
the corresponding earnings. The other two eigenvalues are the roots of the equation

λ2
1 +

(
I2 f+ j

(
2(I2 + S2)

L
− 1
))

λ1 +

(
S2 f+ j

(
2(I2 + S2)

L
− 1
))

I2f = 0. (3.10)

Clearly, the roots of Eq. (3.10) will have negative real parts whenever 2(S2 + I2) > L. Thus, the equilibrium
point E2 = (S2, I2, 0,M2) is locally asymptotically stable under the conditions c > (I2q2 + S2q1)(M2 − τ),
2(S2 + I2) > L.

(iv) The characteristic equation corresponding to the Jacobian matrix (3.4) at the harvesting-and disease-
free equilibrium E3(S3, 0, 0,M3) can be written as

(λ3 + j){λ3 − (Lf− µ)}{λ3 +φ1 (c− Lq1 (M3 − τ))}{λ3 +M3φ2 (A1 + 2A2M3)} = 0.

Therefore, the eigenvalues are −j, Lf− µ, −φ1 (c− Lq1 (M3 − τ)) and −M3φ2 (A1 + 2A2M3). Clearly,
two eigenvalues −j and −M3φ2 (A1 + 2A2M3) are always negative. The negativity of the remaining two
is assured under the conditions µ > fL and c > Lq1 (M3 − τ). Recall that the existence condition of
equilibrium points E2 and E4 is µ < fL. Therefore, whenever the equilibrium point E2 or E4 exists, the
steady state E3 cannot be stable. The other condition c > Lq1 (M3 − τ) tells that the fishing cannot be
profitable whenever E3 is stable.

(v) Suppose an interior equilibrium E∗ = (S∗, I∗,H∗,M∗) of the system (2.4) exists. The Jacobian matrix
in this case is evaluated as

JE∗ =


c11 c12 c13 0
c21 0 c23 0
c31 c32 0 c34
c41 c42 c43 c44

 ,

where c11 = −
2j(I∗+S∗)

L , c12 = −S∗f − j
(

2(I∗+S∗)
L − 1

)
, c13 = −S∗q1, c21 = I∗f, c23 = −I∗q2, c31 =

H∗φ1q1(M
∗ − τ), c32 = H∗φ1q2(M

∗ − τ), c34 = φ1(H
∗I∗q2 +H

∗S∗q1), c41 = −H∗M∗φ2q1,
c42 = −H∗M∗φ2q2, c43 = −M∗φ2 (I

∗q2 + S
∗q1) , c44 = −M∗φ2(A1 + 2A2M

∗). The corresponding charac-
teristic equation reads

λ2
4 +C4λ2

3 +C5λ2
2 +C6λ2 +C7 = 0,

where

C4 = (−c11 − c44),
C5 = (c11 c44 − c13 c31 − c12 c21 − c23 c32 − c34 c43),
C6 =

(
c11 c23 c32 − c12 c23 c31 − c13 c21 c32 + c12 c21 c44 + c11 c34 c43

+ c13 c31 c44 − c13 c34 c41 + c23 c32 c44 − c23 c34 c42
)
,

C7 = c11 c23 c34 c42 − c11 c23 c32 c44 + c12 c21 c34 c43 + c12 c23 c31 c44

− c12 c23 c34 c41 + c13 c21 c32 c44 − c13 c21 c34 c42.

(3.11)

Following Routh-Hurwitz criterion [40], a set of necessary and sufficient conditions for the stability of the
equilibrium point E∗ = (S∗, I∗,H∗,M∗) is

C4 > 0, C6 > 0, C7 > 0, C4C5C6 − (C2
6 +C

2
4C7) > 0.

This completes the proof of the theorem.
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3.5. Bifurcation analysis
Changes in the system dynamics for the variation of a system parameter may be well described

through its bifurcation results. Considering the fishing tax τ as the control parameter, we investigate
the occurrence of bifurcations in the system (2.4). One can prove the following theorem for the existence
of bifurcations.

Theorem 3.3.

(i) The system (2.4) undergoes a transcritical bifurcation at the disease-free equilibrium point E1(S1, 0,H1,P1) if
τ reaches the critical value τTC1 , where τTC1 is the positive root of the equation

fS1(τ) − µ− q2H1(τ) = 0,

and the transversality condition f 6= q2v3
v1

holds.
(ii) The system (2.4) undergoes a transcritical bifurcation at the harvesting-free equilibrium point E2(S2, I2, 0,P2)

if τ arrives the threshold level τTC2 , where

τTC2 =M2 −
c

I2q2 + S2q1
,

and the transversality condition τTC2 6=M2 +
q1S2+q2I2
q1w1+q2w2

w4 holds.

Proof.

(i) From (3.6), one can observe that the Jacobian matrix leaves a zero eigenvalue if

fS1(τ) − µ− q2H1(τ) = 0. (3.12)

Let τ = τTC1 be a positive root of the Eq. (3.12). Then, at τTC1 , the eigenvector corresponding to the zero
eigenvalue of JE1(S1, 0,H1,M1) and JE1(S1, 0,H1,M1)

T are

ζ =


v1
v2
v3
1

 and η =


0
1
0
0

 ,

where JE1(S1, 0,H1,M1)
T is the transpose of JE1(S1, 0,H1,M1) and

v1 = −
b32v2 + b34

b31
,

v2 =
b13b34(b31b44 − b41b34) + b11b34b31b43

(b12b31 − b11b32)b31b43 − b13b31(b42b31 − b41b32)
,

v3 =
b11b34(b42b31 − b41b32) − (b12b31 − b11b32)(b31b44 − b41b34)

(b12b31 − b11b32)b31b43 − b13b31(b42b31 − b41b32)
.

Now the three conditions of Sotomayor’s theorem [60] for the existence of a degenerate transcritical
bifurcation at τ = τTC1 are

ηTRτ

(
E1(S1, 0,H1,M1); τ = τTC1

)
= 0,

ηTDRτ

(
E1(S1, 0,H1,M1); τ = τTC1

)
ζ = 0,

ηTD2R

(
E1(S1, 0,H1,M1); τ = τTC1

)
(ζ, ζ) 6= 0.

(3.13)
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Here Rτ =

(
dF1
dτ , dF2

dτ , dF3
dτ , dF4

dτ

)T
and DRτ

(
JE1(S1, 0,H1,M1); τ = τTC1

)
ζ is the linear transformation

formed by the matrix of partial derivatives of the components of Rτ with respect to the state vari-

ables (S, I,H,M). Similarly, one can define the other linear transformation D2R

(
JE1(S1, 0,H1,M1); τ =

τTC1

)
(ζ, ζ). It is to be noted that the second condition of (3.13) needs to be non-zero for the appearance

of non-degenerate transcritical bifurcation [60]. Now,

ηTRτ

(
E1(S1, 0,H1,M1); τ = τTC1

)
= (0 1 0 0)


0
0

φ1q1S1H1
0


τ=τTC1

= 0,

ηTDRτ

(
E1(S1, 0,H1,M1); τ = τTC1

)
ζ = (0 1 0 0)


0 0 0 0
0 0 0 0

φ1q1H1 φ1q1H1 φ1q1S1 0
0 0 0 0


τ=τTC1


v1
v2
v3
1

 = 0,

ηTD2R

(
E1(S1, 0,H1,M1); τ = τTC1

)
(ζ, ζ) = (0 1 0 0)


d11 d12 d13 0
d21 d22 d23 0
d31 d32 d33 d34
d41 d42 d43 d44


τ=τTC1


v1
v2
v3
1


= d21v1 + d22v2 + d23v3 = 2(fv1v2 − q2v2v3),

where d11 = −fv2 −
2j
L (v1 + v2) − q1v3, d12 = −fv1 −

2j
L (v1 + v2), d13 = −q1v1, d21 = fv2, d22 = fv1 −

q2v3, d23 = −q2v2, d31 = φ1q1((M1 − τ
TC
1 )v3 +H1), d32 = φ2q2((M1 − τ

TC
1 )v3 +H1), d33 = φ1{q1S1 +

(q1v1 +q2v2)(M1 − τ
TC
1 )}, d34 = φ1{q1S1v3 +q1H1(v1 + v2)}, d41 = −φ2q1(H1 +M1v3), d42 = −φ2q2(H1 +

M1v3), d43 = −φ2{M1(q1v1 + q2v2) + S1q1(v3 + 1)}, d44 = −φ2{H1(q1v1 + q2v2) + S1q1 + (2A1 + 6A2M1)}.
Thus, following Sotomayars theorem [60], whenever the control parameter τ reaches the critical value
τ = τTC1 , a degenerate transcritical bifurcation point occurs if the condition f 6= q2v3

v1
holds.

(ii) Proceeding similarly, one can show that the variational matrix (3.9), corresponding to the harvesting
effort-free equilibrium point E2(S2, I2, 0,M2), gives a zero eigenvalue at τ =M2 −

c
I2q2+S2q1

= τTC2 (say). In
this case, the eigenvectors of JE2(S2, I2, 0,M2) and JE2(S2, I2, 0,M2)

T , corresponding to the zero eigenvalue
at τTC2 , are

ζ̂ =


w1
w2
w3
w4

 and η̂ =


0
0
1
0

 ,

where

w1 = −
q2

f
,

w2 =
q2

(
−fI2 − j

(
2(S2+I2)

L − 1
))

(A1 + 2A2M2) + f(q1S2 + q2I2)
(
fS2 + j

(
2(S2+I2)

L − 1
))

q1fφ2S2I2M2(A1 + 2A2M2)
,

w3 = 1, w4 =
q1S2 + q2I2

A1 + 2A2M2
.

Similar calculations show that there exists a degenerate transcritical bifurcation point at τ = τTC2 if τTC2 6=
M2 +

q1S2+q2I2
q1w1+q2w2

w4.
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3.6. Computational results

To visualize the previous bifurcations, and the in-between stabilities, we have presented a bifurcation
diagram in Fig. 1 with the variations in τ. It shows three distinct dynamic behaviours of the system when
the tax is varied in some stipulated range 0 < τ < 11.

Figure 1: Bifurcation results of the system (2.4) when the tax, τ, is varied in the range 0 < τ < 11. We have plotted the maxima
and minima of each state variables for each value of τ. This tax range is classified into three categories, low, intermediate and
high, depending on the system’s stabilities. The disease-free equilibrium (E1) is stable when the tax is low (0 < τ < 5.42). The
coexisting equilibrium (E∗) is stable in the intermediate tax, 5.42 < τ < 10.32. The harvesting-free equilibrium (E2) is stable if
the tax is high (τ > 10.32). Parameters are as in Table 1.

Solving Eq. (3.12), one gets the unique root as τ = τTC1 = 5.42. At this critical value, the eigenvector
ζ = (v1, v2, v3, 1)T becomes (26.30,−24.65, 0.01, 1)T and therefore the transversality condition of Theorem
3.3 (i) is satisfied as f = 0.04 6= qv3

v1
= 0.0004. Therefore, a transcritical bifurcation arises at τ = τTC1 = 5.42,

following Theorem 3.3 (i), where the disease-free equilibrium E1 coalesces with the coexisting equilibrium
E∗ and exchanges their stability (see Fig. 1). At τ = τTC2 = M2 −

c
I2q2+S2q1

= 10.32, one can obtain
the eigenvector as ζ̂ = (w1,w2,w3,w4)

T = (−22.50, 0.83, 1, 31.12)T . Also the transversality condition of
Theorem 3.3 (ii) is satisfied as τTC2 = 10.32 6=M2 +

q1S2+q2I2
q1w1+q2w2

w4 = 4.90. Therefore, following Theorem 3.3
(ii), another shift of stability through a transcritical bifurcation occurs at τ = 10.32, where the coexisting
equilibrium E∗ and the harvesting-free equilibrium (E2) met. Notice that the market price (M) increases
as the tax increases, while the harvesting effort (H) steadily decreases in the same range 0 < τ < 10.32.
The disease is established through the appearance of the I population as the imposed tax exceeds the
first transcritical value τTC1 = 5.42. The infected fish population increases rapidly for further increase
in τ, while a gradual decline occurs in the healthy fish population. As the regulatory tax crosses the
higher transcritical value τTC2 = 10.32, harvesting effort declines to zero. Thus, there exist three different
dynamic regimes for the variation in τ: (i) the system remains disease-free for low tax (0 < τ < 5.42); (ii)
the disease persists when tax is intermediate (5.42 < τ < 10.32); and (iii) harvesting is not possible if the
imposed tax is high (τ > 10.32). The harvesting-and disease-free equilibrium, E3, does not appear in the
bifurcation analysis results because it is always unstable whenever the equilibrium point E2 or E4 exists.

The time series solutions (Fig. 2) of the system for three particular values of τ show the representative
behaviour of the state variables for all τ in the considered range. At the lower value of the regulating
tax (say τ = 2.5) the required conditions of Theorem 3.2 (ii) are satisfied as C1 = 0.91 > 0,C3 = 0.16 >
0, C1C2 −C3 = 0.28 > 0. Here, the basic reproduction number is R0 = 0.65 < 1. Therefore, the system
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Figure 2: Time evolutions of the system (2.4) for some particular values of τ taken one from each region (see Fig. 1). (a)
Stable behaviour of the infection-free equilibrium E1 = (4.02, 0, 0.21, 5.29) for τ = 2.5. (b) The endemic equilibrium E∗ =
(4.10, 0.31, 0.12, 8.52) is stable for τ = 6. (c) For τ = 10.35, harvesting effort becomes zero and the system stabilizes to the
harvesting-free equilibrium E2 = (1.25, 3.54, 0, 12.45). In each case, the system started from the initial value (0.5, 0.1, 0.5, 2).
Parameters are as in Table 1.

stabilizes to the disease-free equilibrium E1 = (4.02, 0, 0.21, 5.29) (Fig. 2 (a)). Healthy fish stock in this
state is high, at 4.02 units. Consequently, the price remains low (M = 5.29 units), and harvesting effort is
high (H = 0.21 units) due to the availability of the fish stock. Intense harvesting reduces the infected fish,
causing the elimination of infection from the system when the tax is low. If the imposed tax is moderate,
say τ = 6, the system converges to the endemic state E∗, by satisfying the set of necessary and sufficient
conditions of Theorem 3.2 (v) as C4 = 0.91 > 0,C6 = 0.17 > 0,C7 = 0.002 > 0,C4C5C6 − (C2

6 +C
2
4C7) =

0.03 > 0. This gives the stable solutions of all the state variables with equilibrium population levels
S∗ = 4.10, I∗ = 0.31,H∗ = 0.12,M∗ = 8.52 (Fig. 2 (b)). The infected fish can persist in the intermediate
range of 5.42 < τ < 10.32. This is reasonable because increasing tax reduces harvesting and causes
a compensatory increase in infected fish, which helps infection invade the host population. The total
fish stock (S∗ + I∗) at E∗ increases to 4.41 units from 4.02 units compared to the previous state. For
higher tax, say τ = 10.35 (> 10.32), the local stability condition given in Theorem 3.2 (iii) becomes
c − (I2q2 + S2q1)(M − τ) = 0.21 > 0 and 2(S2 + I2) − L = 4 > 0. Therefore, following Theorem 3.2
(iii), the system converges to the harvesting-free equilibrium state E2 = (1.25, 3.54, 0, 12.45) (Fig. 2 (c)),
where each state variable has positive value except the fishing effort, which is zero. Observe that the
fish market price in this state becomes too high (M = 12.45 units) for an imbalance in the demand and
supply. Interestingly, even though the available fish stock is maximum (S2 + I2 = 4.795 units) in this case,
the demand diminishes to zero due to the high market price (see Fig. 1 (d)). Thus, there is a regime
shift as τ crosses the upper transcritical value, where the system enters into a non-harvesting regime
from the harvesting regime due to excessive fishing tax. Fishers opt out of fishing as harvesting is not
economically viable at a higher tax (τ > 10.32). Therefore, it is necessary to control the tax parameter
sustainably, and the challenge for the regulating agency is to optimize this parameter for sustainable
socio-economic benefits.

4. Optimal taxation policy

Here we explore the trade-off between the regulatory tax and the societal net benefit. The societal
benefit (say, Θ) is defined here as the sum of net revenue from fish selling (say, Θ1) and the income earned



B. Sarkar, S. Bhattacharya, N. Bairagi, J. Nonlinear Sci. Appl., 16 (2023), 145–167 159

from the fishing tax (say, Θ2), where

Θ1(S, I,H,M, τ) = landed fish × (market price minus fishing tax) = H(q1S+ q2I)(M− τ),
Θ2(S, I,H,M, τ) = landed fish × fishing tax = H(q1S+ q2I)τ, (4.1)

and

Θ(S, I,H,M, τ) = revenue from fishing (Θ1) + revenue from tax (Θ2) = (q1MS+ q2MI)H. (4.2)

We find whether there exists an optimal value of the imposed tax so that the societal benefit is maximum.
To maximize the societal benefit, the optimal taxation problem may be defined as

= =

∫∞
0
Θ(S, I,H,M, τ)e−δtdt,

where δ indicates the annual discount rate and Θ is defined in Eq. (4.2). The control variable τ is subject
to the constraints 0 6 τ < τmax, where τmax denote the upper limits of the imposed tax. By virtue of the
Pontryagin’s maximum principle [63], one can write the Hamiltonian of the system as

Υ(S, I,H,M, τ) = H(q1MS+ q2MI)e
−δt + ξ1

[
j(S+ I)

(
1 −

S+ I

L

)
− fSI− q1SH

]
+ ξ2

[
fSI− µI− q2IH

]
+ ξ3

[
φ1
(
(q1S+ q2I)(M− τ) − c

)
H
]

+ ξ4

[
φ2M

(
A−A1M−A2M

2 − q1SH− q2IH
)]

,

subject to the system (2.4), where ξ1, ξ2, ξ3, and ξ4 are the adjoint variables. The optimal control variable
τ has to satisfy the following conditions to maximize Υ [52]:

∂Υ

∂τ
= 0,

dξ1

dt
= −

∂Υ

∂S
,
dξ2

dt
= −

∂Υ

∂I
,
dξ3

dt
= −

∂Υ

∂H
,
dξ4

dt
= −

∂Υ

∂M
.

At any arbitrary equilibrium point (Ŝ, Î, Ĥ, M̂), ∂Υ∂τ = 0 gives ξ3φ1
(
− q1Ŝ− q2Î

)
Ĥ = 0. For the nontrivial

solution, one must have

ξ3 = 0.

Again, dξ4
dt = −

[
∂Υ
∂M

]
(Ŝ,Î,Ĥ,M̂)

gives

dξ4

dt
= D2e

−δt +D1ξ4, (4.3)

where D1 = −φ2
{
A− 2A1M̂− 3A2M̂

2 −q1ŜĤ−q2ÎĤ
}

and D2 = −
{
q1ŜĤ+q2ÎĤ

}
. Solving (4.3), one gets

ξ4 = −
D2

D1 + δ
e−δt.

Also, dξ3
dt = −

[
∂Υ
∂H

]
(Ŝ,Î,Ĥ,M̂)

provides

ξ1 = F1e
−δt − F2ξ2,

where F1 =
(
q1Ŝ+ q2Î

)(
M̂+ D2φ2M̂

D1+δ

)
1
q1Ŝ

and F2 = q2Î

q1Ŝ
. Putting the value of ξ1 in dξ2

dt = −
[
∂Υ
∂I

]
(Ŝ,Î,Ĥ,M̂)

,

one gets

ξ2 = −
D4

D3 + δ
e−δt and consequently ξ1 =

{
F1 +

D4F2

D3 + δ

}
e−δt,
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where D3 = F2

(
j
(
1 −

2(Ŝ+Î)
L

)
− fŜ

)
− fŜ + µ + q2Ĥ, and D4 = −q2ĤM̂ − F1

(
j
(
1 −

2(Ŝ+Î)
L

)
− fŜ

)
−

q2φ2D2ĤM̂
(D1+δ)

.
Observe that each of these adjoint variables (ξ1, ξ2, ξ3, ξ4) is bounded. Substituting the values of

these adjoint variables in dξ1
dt = −

[
∂Υ
∂S

]
(Ŝ,Î,Ĥ,M̂)

, one gets the optimal tax equation as

Γ(τ) = q1M̂Ĥ+

(
j
(
1 −

2(Ŝ+ Î)
L

)
− fÎ− q1Ĥ− δ

)(
F1 +

D4F2

D3 + δ

)
−
D4fÎ

D3 + δ
+
D2φ2q1ĤM̂

(D1 + δ)
= 0 (4.4)

for a suitable choice of the annual discount rate, δ. The positive values of τ for which Γ(τ) = 0 are the
possible optical candidates. The optimal value τ = τc is the value for which Θ is maximum. If there are
i number of equilibrium points with non-zero harvesting value, we will obtain i number of critical τc’s.
Then the optimal societal revenue, Θmax, is given by

Θmax = max
i
Θ(S, I,H,M, τci ).

To compute the optimum tax level and the corresponding societal revenue Θ(S, I,H,M, τ) for the
parameter values considered in Table 1 with an annual discount rate δ = 0.001, we solve Eq. (4.4) at
the disease-free and endemic equilibrium points, where harvesting has non-zero equilibrium value. We
obtain two optimal values of τ, namely, τc1 = 4.44M$/metric ton at the infection-free equilibrium state,
and τc2 = 9.22 M$/metric ton at the endemic equilibrium state (See Fig. 3 (a)). The societal benefit or
the net revenue at these two optimal tax values are computed from (4.2) as Θ(τc1 ) = 4.096 M$/year and
Θ(τc2 ) = 1.478M$/year. Thus, the maximum net revenue is Θmax = max(4.09, 1.478) = 4.09M$/year and
the optimal tax is τc1 = 4.44M$/metric ton, which is obtained at the disease-free equilibrium state, E1.
Following similar calculations, one can get the optimal equation for the fishing tax revenue Θ2 as

Γ1(τ) =
1
q1Ŝ

{
−δ+ j

{
1 −

2(Ŝ+ Î)
L

}
− fÎ− q1Ĥ

}{
D6q2Î

D5 + δ
+ (q1Ŝ+ q2Î)M̂− c−

δ

φ1
+

D2

D1 + δ

}
+ q1τĤ−

D6fÎ

D5 + δ
+ q1(M̂− τ)Ĥ+

D2τĤ

D1 + δ
= 0,

(4.5)

where

D5 =
q2Î

q1Ŝ

{
j

(
1 −

2(Ŝ+ Î)
L

)
− fŜ

}
+ µ− fŜ+ q2Ĥ,

D6 = −q2τĤ−

{
(q1Ŝ+ q2Î)M̂− c−

δ

φ1
+

D2

D1 + δ

}{
j

(
1 −

2(Ŝ+ Î)
L

)
− fŜ

}
−
D2φ2q2M̂Ĥ

D1 + δ
.

The solution of Eq. (4.5) provides the optimal value of τ as τc1
Θ2

= 1 M$/metric ton and τc2
Θ2

= 5.68
M$/metric ton (See Fig. 3 (b)). The earnings from fishing tax at these two optimal tax values are computed
from Eq. (4.1) as Θ2(τ

c1
Θ2

) = 0.78 M$/year and Θ2(τ
c2
Θ2

) = 2.717 M$/year. Thus, the maximum fishing tax
revenue is Θmax

2 = 2.717 M$/year and the optimal tax is τc2
Θ2

= 5.68M$/metric ton, which is obtained at
the endemic equilibrium state, E∗. It is worth mentioning that the fisherman revenue (Θ1) is a decreasing
tax function, and it is maximum when τ = 0.

In Table 2, we have presented the equilibrium values of the state variables and the revenues at equilib-
rium points E1 and E∗ for some particular discounts of τ. It shows that the societal income is maximum
(Θ = 4.096) when τ = 4.44. Fishermen’s earnings from selling fishing are maximum (Θ1 = 2.453) when
τ = 0 and the revenue from the fishing tax is maximum (Θ2 = 2.717) when τ = 5.68. It is interesting to
note that the total equilibrium fish stock (Ŝ+ Î) is maximum (4.795) in the endemic state; however, the
maximum societal revenue (4.096) is generated at the disease-free equilibrium state for the optimal tax
τ = 4.44.
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Figure 3: (a) Plot of the optimal tax equation (4.4) for Θ with respect to τ. It shows that there are two optimal values of τ, viz.,
τc1 = 4.44, and τc2 = 9.22, for which Γ(τ) = 0. (b) Similar plot of (4.5) for Θ2 shows that there exists two optimal values of τ, viz.,
τc1
Θ2

= 1, and τc2
Θ2

= 5.68. Here the annual discount rate is δ = 0.001, and the other parameters are as in Table 1.

Table 2: This table evaluates the societal revenue Θ(Ŝ, Î, Ĥ, M̂), fisherman’s revenue Θ1(Ŝ, Î, Ĥ, M̂), and tax revenue Θ2(Ŝ, Î, Ĥ, M̂)
at the equilibrium states E1 and E∗, where harvesting is possible, for some particular values of fishing tax with an annual
discount rate δ = 0.001. Observe that societal revenue is maximum (4.096 M$/year) in the disease-free state (where Î = 0) for
τ = 4.44 M$/metric ton. Tax revenue is maximum (2.717 M$/year) in the endemic state for τ = 5.68 M$/metric ton. Fishers’
revenue is maximum (2.453 M$/year) when there is no fishing tax and gradually declines with increasing τ. The optimum
values are written in boldface. The parameters are as in Fig. 3.

τ Ŝ Î Ŝ+ Î Ĥ M̂ Θ1(Ŝ, Î, Ĥ, M̂) Θ2(Ŝ, Î, Ĥ, M̂) Θ = Θ1 +Θ2
(M$/MT∗) (MT) (MT) (MT) (SFU) (M$/MT) (M$/year) (M$/year) (M$/year)

0 3.789 0 3.789 0.273 2.970 2.453 0 2.453
2.5 4.024 0 4.024 0.2195 5.296 1.976 1.767 3.743
4.44 4.244 0 4.244 0.1701 7.091 1.531 2.565 4.096

5 4.3123 0 4.3123 0.1549 7.609 1.394 2.672 4.066
5.07 4.320 0 4.320 0.153 7.674 1.377 2.681 4.058
5.68 4.305 0.0839 4.3889 0.1359 8.237 1.22 2.717 3.941

6 4.101 0.3118 4.4128 0.1267 8.527 1.140 2.707 3.847
8 2.780 1.791 4.571 0.0685 10.345 0.6132 2.0918 2.705

9.22 1.971 2.715 4.686 0.0321 11.459 0.289 1.189 1.478
10.32 1.250 3.545 4.795 0 12.454 0 0 0

∗MT stands for metric ton.

The equilibrium revenue curves for varying taxes are plotted in Fig. 4. It shows that the fisherman’s
revenue (Θ1) is maximum when there is no fishing tax. Here the societal benefit (Θ) coincided with the
fishers’ earnings. Otherwise, societal benefits exceed the fishers’ incomes for the feasible range of τ. The
societal benefit is always higher from the generated revenue from the fishing tax (Θ1) in the same range. It
is observable that the societal revenue gradually increases with τ and becomes maximum in the disease-
free state for τ = 4.44, and after that, it decreases to zero. Whereas the tax revenue increases till τ = 5.68
and then declines to zero. The maximum tax earned at τ = 5.68 when disease persists in the system.
These results show the existence of a trade-off between the revenue earnings and the imposed tax.
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Figure 4: Equilibrium revenue curves are plotted against the tax. The societal revenue (Θ(τ)) is maximum at τc1 = 4.44 M$/metric
ton, and the corresponding maximum revenue is 4.096 M$/year. The maximum revenue generated from the imposed tax (Θ2(τ))
is obtained at the optimal tax τcΘ2

= 5.68 M$/metric ton, and the corresponding tax revenue is 2.717 M$/year. At τ = 0, the
fishers’ revenue is maximum, and the corresponding earning is 2.453 M$/year. Here the annual discount rate is δ = 0.001, and
the other parameters are as in Table 1.

4.1. Sensitivity analysis

We estimated the changes (see Table 3) in the optimal societal revenue due to the changes in the pa-
rameter values. Table 3 shows only those parameters out of 13 parameters in the Table 1 which bring
significant change in the result. While determining the sensitivity of a parameter, all other parameters
remain fixed as in Table 1 with τ = 4.44 M$/metric ton at which societal revenue is maximum (4.096
M$/year). This table shows that the maximal demand A is the most sensitive parameter. If the parameter
A is enhanced by 50% or 25% from its default value 0.9 (see Table 1), then the optimal societal revenue
will be increased by 83.86% or 40.18%, respectively. On the contrary, if it is decreased by 50% or 25%,
the societal revenue decreases by 76.07% or 37.95%, respectively. It is observable that the stability region
interchanges between disease-free and endemic states with the variation of most of the parameters. How-
ever, the scenario is completely different with the variation of j and A1, where the stability region always
remains disease-free. It is interesting to observe that the optimal societal revenue always decreases from
its default value with any increment or decrement of the parameter τ. This implies that the value of τ
(4.44 M$/metric ton) is optimal and the corresponding societal revenue (4.096 M$/year) is also optimal.

5. Discussion

The fishery has become one of the significant subsistences across the globe. According to the 2021 re-
port of the Food and Agriculture Organization (FAO), about 38.98 million people are engaged in fisheries
[71], justifying why most fisheries are under stress. Some governing agencies try to restrict harvesting by
imposing a tax per unit of biomass of landed fish. Although taxation controls overfishing, an irrational
tax policy may negatively affect fishery dynamics and revenue generation. It may help increase fishery-
related infection and drastically reduce the amount of landed fish, causing a significant difference between
the demand and supply of this globally accepted food item. A pronounced effect of this imbalance is the
price hike of the fish stock, which may directly impact the fishery & related industries and employability.
So the question is: how much taxation benefits a fishery in the presence of infection? Does there exist any
trade-off? How does the intricacy of demand, tax, and disease play a role in fishery dynamics and rev-
enue generation? We proposed a nonlinear bioeconomic harvesting model of a single-species fishery with
infection, variable market price, and nonlinear demand to answer these questions and explore taxation’s
ecological and economic effects. To our knowledge, such a theoretical investigation is rare in the literature.
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Table 3: Effect on optimal societal revenue due to the change in the key parameters and the corresponding changes in the
stability state. The seven parameters are varied 25 or 50 per cent upside or downside from their default values mentioned in
Table 1, and the corresponding changes in the optimal societal revenue are tabulated. Here a “ + ” sign indicates a shift in the
upside, and a “ − ” sign suggests a change in the downside.

Parameters Changes in Changes Stability Parameters Changes in Changes Stability
parameters (%) in Θ (%) region parameters (%) in Θ (%) region

+50 83.86 Disease-free +50 −6.09 Disease-free
A −50 −76.07 Endemic A1 −50 6.21 Disease-free

+25 40.18 Disease-free +25 −3.06 Disease-free
−25 −37.95 Endemic −25 3.09 Disease-free
+50 −20.81 Endemic +50 −4.001 Endemic

A2 −50 22.85 Disease-free c −50 −4.47 Disease-free
+25 −10.65 Disease-free +25 −0.999 Disease-free
−25 11.19 Disease-free −25 −1.13 Disease-free
+50 −2.91 Disease-free +50 −12.59 Endemic

L −50 −24.00 Endemic τ −50 −11.11 Disease-free
+25 −1.07 Disease-free +25 −3.03 Endemic
−25 −2.84 Endemic −25 −2.96 Disease-free
+50 −0.08 Disease-free

j −50 −1.79 Disease-free
+25 −0.13 Disease-free
−25 −0.03 Disease-free

We have considered a nonlinear quadratic market demand to represent the demand-price relation. Such
a quadratic demand may be a more suitable demand function, compared to constant [10], linear [53], and
saturated [8] types functions, when the demand of a particular commodity decreases sharply if its price
is high.

Our system has seven equilibrium points, of which three are always unstable, and the remaining
four may be stable or unstable depending on the parametric conditions. The bifurcation analysis for
the tax parameter classified the system stability into three distinct dynamic regimes. It is revealed that
the system remains disease-free if the regulatory tax is low, which promotes intensive harvesting. Such
intense harvesting reduces the infected fish, causing the elimination of infection from the system. A
reduction in the harvesting efforts due to increased tax helps the infection spread, and the disease can
invade the fish population for an extended range of intermediate tax. Healthy fish density gradually
decreases in this case with a complementary increase in the infected fish density. Since fish harvesting
is relatively low in the medium range of tax, its supply reduces significantly, increasing the difference
between demand and supply with the growing tax. Therefore, the fish price steadily increases following
the open market theory. As the market price becomes too high, the demand gradually diminishes to zero
(see Fig. 5).

Figure 5: Quadratic demand curve D(M) = A−A1 −A2M
2 is plotted as a function of price, M, in the range 0 6M 6 12.45. The

upper value of M is fixed from Fig. 2 (c), where the harvesting-free equilibrium E2 is stable. It shows that demand decreases
from its maximum when the price is zero to its minimum when it is high. The parameters are as in Table 1.
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Thus, the fisheries experience a tax-induced functioning instability at the higher level of fishing tax.
In such a case, fishing is no more economically viable, and the fishers opt out of fisheries due to a lack
of demand and high fishing tax. The ecological and economic effect of such a non-harvesting regime
shift is immense. Such a shift from a harvesting regime to a non-harvesting regime is not due to the
scarcity of harvested stock but the need for better governance. Therefore, it is necessary to control the
tax parameter sustainably, and the challenge for the regulatory agency is to optimize this parameter for
maximal socio-economic benefits.

It is worth mentioning that the fisherman’s income will be maximum if they do not pay any fishing tax.
Indeed, their earnings will gradually decrease with the increasing tax. On the other hand, the regulatory
authority earns more revenue by charging a higher fishing tax. Imposing a tax is beneficial because it
controls harvesting and saves fishery from overexploitation. Secondly, the regulatory authority may use
the tax revenue for various welfare measures for the people associated with the fishery, marine ecosystem,
coastal management, and related value chains for sustainable development and economic prosperity.
Therefore, an effective regulatory taxation policy may play a crucial role in the sustainable use of fisheries
through a win-win solution. A low tax may help make the system infection-free, while infection may
persist if the tax is high. A higher regulatory tax, however, may put an end to harvesting. It implies that
there exists a trade-off. Consequently, an optimal taxation policy is necessary to make a balance among the
harvesting intensity, infection spreading, market demand & supply, and revenue earnings. It is revealed
that some optimum tax exists, where the societal income is maximum and occurs at the disease-free state
for some lower optimal tax. However, the regulatory authority earns the maximum revenue for some
higher optimal tax in the disease state. Fishers’ income is maximized with no tax and steadily decreases
to zero with increasing tax. Noticeably, the gap between demand and supply of fish widens with the
increasing tax, causing a steady price increase in this globally accepted renewable food item. Thus,
the higher regulatory tax causes an imbalance in the fish supply and price, which may severely impact
fishery, fishery-related industries, and employability. Therefore, there should be an optimal tax policy for
which the fishery sustains and maximizes societal revenue. The future of fishing thus depends on many
interconnected factors, including infection control, ecosystem management, maintaining the demand-
supply chain, and implementing a justifiable regulatory taxation policy through good governance. Indeed,
this will help put a step forward in achieving the sustainable development goals by 2030 as set by the
United Nations.

6. Conclusion

Our study reveals that fish disease may alter the system dynamics and reduce revenue generation.
Taxation might control overfishing but may help disease spreading and price hiking if it is high. The
system may experience a regime shift for a too high regulatory tax, where the system enters into a non-
harvesting regime from the harvesting one. There exist some trade-offs between revenue generation and
regulatory tax. The overall societal revenue is highest at the optimal tax level. However, the individual
earnings in these heads are different at different tax levels.
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